1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
SUBROUTINE IB01RD( JOB, N, M, L, NSMP, A, LDA, B, LDB, C, LDC, D,
$ LDD, U, LDU, Y, LDY, X0, TOL, IWORK, DWORK,
$ LDWORK, IWARN, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To estimate the initial state of a linear time-invariant (LTI)
C discrete-time system, given the system matrices (A,B,C,D) and
C the input and output trajectories of the system. The model
C structure is :
C
C x(k+1) = Ax(k) + Bu(k), k >= 0,
C y(k) = Cx(k) + Du(k),
C
C where x(k) is the n-dimensional state vector (at time k),
C u(k) is the m-dimensional input vector,
C y(k) is the l-dimensional output vector,
C and A, B, C, and D are real matrices of appropriate dimensions.
C Matrix A is assumed to be in a real Schur form.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies whether or not the matrix D is zero, as follows:
C = 'Z': the matrix D is zero;
C = 'N': the matrix D is not zero.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C NSMP (input) INTEGER
C The number of rows of matrices U and Y (number of
C samples used, t). NSMP >= N.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A in a real Schur form.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B (corresponding to the real Schur
C form of A).
C If N = 0 or M = 0, this array is not referenced.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= N, if N > 0 and M > 0;
C LDB >= 1, if N = 0 or M = 0.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading L-by-N part of this array must contain the
C system output matrix C (corresponding to the real Schur
C form of A).
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= L.
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading L-by-M part of this array must contain the
C system input-output matrix.
C If M = 0 or JOB = 'Z', this array is not referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if M > 0 and JOB = 'N';
C LDD >= 1, if M = 0 or JOB = 'Z'.
C
C U (input) DOUBLE PRECISION array, dimension (LDU,M)
C If M > 0, the leading NSMP-by-M part of this array must
C contain the t-by-m input-data sequence matrix U,
C U = [u_1 u_2 ... u_m]. Column j of U contains the
C NSMP values of the j-th input component for consecutive
C time increments.
C If M = 0, this array is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= MAX(1,NSMP), if M > 0;
C LDU >= 1, if M = 0.
C
C Y (input) DOUBLE PRECISION array, dimension (LDY,L)
C The leading NSMP-by-L part of this array must contain the
C t-by-l output-data sequence matrix Y,
C Y = [y_1 y_2 ... y_l]. Column j of Y contains the
C NSMP values of the j-th output component for consecutive
C time increments.
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= MAX(1,NSMP).
C
C X0 (output) DOUBLE PRECISION array, dimension (N)
C The estimated initial state of the system, x(0).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; a matrix whose estimated condition
C number is less than 1/TOL is considered to be of full
C rank. If the user sets TOL <= 0, then EPS is used
C instead, where EPS is the relative machine precision
C (see LAPACK Library routine DLAMCH). TOL <= 1.
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains the reciprocal condition
C number of the triangular factor of the QR factorization of
C the matrix Gamma (see METHOD).
C On exit, if INFO = -22, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( 2, min( LDW1, LDW2 ) ), where
C LDW1 = t*L*(N + 1) + 2*N + max( 2*N*N, 4*N ),
C LDW2 = N*(N + 1) + 2*N +
C max( q*(N + 1) + 2*N*N + L*N, 4*N ),
C q = N*L.
C For good performance, LDWORK should be larger.
C If LDWORK >= LDW1, then standard QR factorization of
C the matrix Gamma (see METHOD) is used. Otherwise, the
C QR factorization is computed sequentially by performing
C NCYCLE cycles, each cycle (except possibly the last one)
C processing s samples, where s is chosen by equating
C LDWORK to LDW2, for q replaced by s*L.
C The computational effort may increase and the accuracy may
C decrease with the decrease of s. Recommended value is
C LDRWRK = LDW1, assuming a large enough cache size, to
C also accommodate A, B, C, D, U, and Y.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problem to be solved has a
C rank-deficient coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge.
C
C METHOD
C
C An extension and refinement of the method in [1] is used.
C Specifically, the output y0(k) of the system for zero initial
C state is computed for k = 0, 1, ..., t-1 using the given model.
C Then the following least squares problem is solved for x(0)
C
C ( C ) ( y(0) - y0(0) )
C ( C*A ) ( y(1) - y0(1) )
C Gamma * x(0) = ( : ) * x(0) = ( : ).
C ( : ) ( : )
C ( C*A^(t-1) ) ( y(t-1) - y0(t-1) )
C
C The coefficient matrix Gamma is evaluated using powers of A with
C exponents 2^k. The QR decomposition of this matrix is computed.
C If its triangular factor R is too ill conditioned, then singular
C value decomposition of R is used.
C
C If the coefficient matrix cannot be stored in the workspace (i.e.,
C LDWORK < LDW1), the QR decomposition is computed sequentially.
C
C REFERENCES
C
C [1] Verhaegen M., and Varga, A.
C Some Experience with the MOESP Class of Subspace Model
C Identification Methods in Identifying the BO105 Helicopter.
C Report TR R165-94, DLR Oberpfaffenhofen, 1994.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C IBLOCK is a threshold value for switching to a block algorithm
C for U (to avoid row by row passing through U).
INTEGER IBLOCK
PARAMETER ( IBLOCK = 16384 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDA, LDB, LDC, LDD, LDU,
$ LDWORK, LDY, M, N, NSMP
CHARACTER JOB
C .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *), D(LDD, *),
$ DWORK(*), U(LDU, *), X0(*), Y(LDY, *)
INTEGER IWORK(*)
C .. Local Scalars ..
DOUBLE PRECISION RCOND, TOLL
INTEGER I2, IA, IAS, IC, ICYCLE, IE, IERR, IEXPON,
$ IG, INIGAM, INIH, INIR, INIT, IQ, IREM, IRHS,
$ ISIZE, ISV, ITAU, IU, IUPNT, IUT, IUTRAN, IX,
$ IXINIT, IY, IYPNT, J, JWORK, K, LDDW, LDR,
$ LDW1, LDW2, MAXWRK, MINSMP, MINWLS, MINWRK, NC,
$ NCP1, NCYCLE, NN, NOBS, NRBL, NROW, NSMPL, RANK
LOGICAL BLOCK, FIRST, NCYC, POWER2, SWITCH, WITHD
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGELSS, DGEMV, DGEQRF, DLACPY,
$ DLASET, DORMQR, DTRCON, DTRMM, DTRMV, DTRSV,
$ MA02AD, MB01TD, MB04OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, LOG, MAX, MIN, MOD
C .. Executable Statements ..
C
C Check the input parameters.
C
WITHD = LSAME( JOB, 'N' )
IWARN = 0
INFO = 0
NN = N*N
MINSMP = N
C
IF( .NOT.( LSAME( JOB, 'Z' ) .OR. WITHD ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( L.LE.0 ) THEN
INFO = -4
ELSE IF( NSMP.LT.MINSMP ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.1 .OR. ( LDB.LT.N .AND. M.GT.0 ) ) THEN
INFO = -9
ELSE IF( LDC.LT.L ) THEN
INFO = -11
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L .AND. M.GT.0 ) )
$ THEN
INFO = -13
ELSE IF( LDU.LT.1 .OR. ( M.GT.0 .AND. LDU.LT.NSMP ) ) THEN
INFO = -15
ELSE IF( LDY.LT.MAX( 1, NSMP ) ) THEN
INFO = -17
ELSE IF( TOL.GT.ONE ) THEN
INFO = -19
END IF
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
NSMPL = NSMP*L
IQ = MINSMP*L
NCP1 = N + 1
ISIZE = NSMPL*NCP1
IC = 2*NN
MINWLS = MINSMP*NCP1
ITAU = IC + L*N
LDW1 = ISIZE + 2*N + MAX( IC, 4*N )
LDW2 = MINWLS + 2*N + MAX( IQ*NCP1 + ITAU, 4*N )
MINWRK = MAX( MIN( LDW1, LDW2 ), 2 )
IF ( INFO.EQ.0 .AND. LDWORK.GE.MINWRK ) THEN
MAXWRK = ISIZE + 2*N + MAX( N*ILAENV( 1, 'DGEQRF', ' ', NSMPL,
$ N, -1, -1 ),
$ ILAENV( 1, 'DORMQR', 'LT', NSMPL,
$ 1, N, -1 ) )
MAXWRK = MAX( MAXWRK, MINWRK )
END IF
C
IF ( INFO.EQ.0 .AND. LDWORK.LT.MINWRK ) THEN
INFO = -22
DWORK(1) = MINWRK
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01RD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
DWORK(1) = TWO
DWORK(2) = ONE
RETURN
END IF
C
C Set up the least squares problem, either directly, if enough
C workspace, or sequentially, otherwise.
C
IYPNT = 1
IUPNT = 1
INIR = 1
IF ( LDWORK.GE.LDW1 ) THEN
C
C Enough workspace for solving the problem directly.
C
NCYCLE = 1
NOBS = NSMP
LDDW = NSMPL
INIGAM = 1
ELSE
C
C NCYCLE > 1 cycles are needed for solving the problem
C sequentially, taking NOBS samples in each cycle (or the
C remaining samples in the last cycle).
C
JWORK = LDWORK - MINWLS - 2*N - ITAU
LDDW = JWORK/NCP1
NOBS = LDDW/L
LDDW = L*NOBS
NCYCLE = NSMP/NOBS
IF ( MOD( NSMP, NOBS ).NE.0 )
$ NCYCLE = NCYCLE + 1
INIH = INIR + NN
INIGAM = INIH + N
END IF
C
NCYC = NCYCLE.GT.1
IRHS = INIGAM + LDDW*N
IXINIT = IRHS + LDDW
IC = IXINIT + N
IF( NCYC ) THEN
IA = IC + L*N
LDR = N
IE = INIGAM
ELSE
INIH = IRHS
IA = IC
LDR = LDDW
IE = IXINIT
END IF
IUTRAN = IA
IAS = IA + NN
ITAU = IA
DUM(1) = ZERO
C
C Set block parameters for passing through the array U.
C
BLOCK = M.GT.1 .AND. NSMP*M.GE.IBLOCK
IF ( BLOCK ) THEN
NRBL = ( LDWORK - IUTRAN + 1 )/M
NC = NOBS/NRBL
IF ( MOD( NOBS, NRBL ).NE.0 )
$ NC = NC + 1
INIT = ( NC - 1 )*NRBL
BLOCK = BLOCK .AND. NRBL.GT.1
END IF
C
C Perform direct of sequential compression of the matrix Gamma.
C
DO 150 ICYCLE = 1, NCYCLE
FIRST = ICYCLE.EQ.1
IF ( .NOT.FIRST ) THEN
IF ( ICYCLE.EQ.NCYCLE ) THEN
NOBS = NSMP - ( NCYCLE - 1 )*NOBS
LDDW = L*NOBS
IF ( BLOCK ) THEN
NC = NOBS/NRBL
IF ( MOD( NOBS, NRBL ).NE.0 )
$ NC = NC + 1
INIT = ( NC - 1 )*NRBL
END IF
END IF
END IF
C
C Compute the extended observability matrix Gamma.
C Workspace: need s*L*(N + 1) + 2*N*N + 2*N + a + w,
C where s = NOBS,
C a = 0, w = 0, if NCYCLE = 1,
C a = L*N, w = N*(N + 1), if NCYCLE > 1;
C prefer as above, with s = t, a = w = 0.
C
JWORK = IAS + NN
IEXPON = INT( LOG( DBLE( NOBS ) )/LOG( TWO ) )
IREM = L*( NOBS - 2**IEXPON )
POWER2 = IREM.EQ.0
IF ( .NOT.POWER2 )
$ IEXPON = IEXPON + 1
C
IF ( FIRST ) THEN
CALL DLACPY( 'Full', L, N, C, LDC, DWORK(INIGAM), LDDW )
ELSE
CALL DLACPY( 'Full', L, N, DWORK(IC), L, DWORK(INIGAM),
$ LDDW )
END IF
C p
C Use powers of the matrix A: A , p = 2**(J-1).
C
CALL DLACPY( 'Upper', N, N, A, LDA, DWORK(IA), N )
CALL DCOPY( N-1, A(2,1), LDA+1, DWORK(IA+1), N+1 )
I2 = L
NROW = 0
C
DO 20 J = 1, IEXPON
IG = INIGAM
IF ( J.LT.IEXPON .OR. POWER2 ) THEN
NROW = I2
ELSE
NROW = IREM
END IF
C
CALL DLACPY( 'Full', NROW, N, DWORK(IG), LDDW, DWORK(IG+I2),
$ LDDW )
CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non Unit',
$ NROW, N, ONE, DWORK(IA), N, DWORK(IG+I2),
$ LDDW )
C p
C Compute the contribution of the subdiagonal of A to the
C product.
C
DO 10 IX = 1, N - 1
CALL DAXPY( NROW, DWORK(IA+(IX-1)*N+IX), DWORK(IG+LDDW),
$ 1, DWORK(IG+I2), 1 )
IG = IG + LDDW
10 CONTINUE
C
IF ( J.LT.IEXPON ) THEN
CALL DLACPY( 'Upper', N, N, DWORK(IA), N, DWORK(IAS), N )
CALL DCOPY( N-1, DWORK(IA+1), N+1, DWORK(IAS+1), N+1 )
CALL MB01TD( N, DWORK(IAS), N, DWORK(IA), N,
$ DWORK(JWORK), IERR )
I2 = I2*2
END IF
20 CONTINUE
C
IF ( NCYC ) THEN
IG = INIGAM + I2 + NROW - L
CALL DLACPY( 'Full', L, N, DWORK(IG), LDDW, DWORK(IC), L )
CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non Unit', L,
$ N, ONE, A, LDA, DWORK(IC), L )
C
C Compute the contribution of the subdiagonal of A to the
C product.
C
DO 30 IX = 1, N - 1
CALL DAXPY( L, A(IX+1,IX), DWORK(IG+LDDW), 1,
$ DWORK(IC+(IX-1)*L), 1 )
IG = IG + LDDW
30 CONTINUE
C
END IF
C
C Setup (part of) the right hand side of the least squares
C problem starting from DWORK(IRHS); use the estimated output
C trajectory for zero initial state, or for the saved final state
C value of the previous cycle.
C A specialization of SLICOT Library routine TF01ND is used.
C For large input sets (NSMP*M >= IBLOCK), chunks of U are
C transposed, to reduce the number of row-wise passes.
C Workspace: need s*L*(N + 1) + N + w;
C prefer as above, with s = t, w = 0.
C
IF ( FIRST )
$ CALL DCOPY( N, DUM, 0, DWORK(IXINIT), 1 )
CALL DCOPY( N, DWORK(IXINIT), 1, X0, 1 )
IY = IRHS
C
DO 40 J = 1, L
CALL DCOPY( NOBS, Y(IYPNT,J), 1, DWORK(IY), L )
IY = IY + 1
40 CONTINUE
C
IY = IRHS
IU = IUPNT
IF ( M.GT.0 ) THEN
IF ( WITHD ) THEN
C
IF ( BLOCK ) THEN
SWITCH = .TRUE.
NROW = NRBL
C
DO 60 K = 1, NOBS
IF ( MOD( K-1, NROW ).EQ.0 .AND. SWITCH ) THEN
IUT = IUTRAN
IF ( K.GT.INIT ) THEN
NROW = NOBS - INIT
SWITCH = .FALSE.
END IF
CALL MA02AD( 'Full', NROW, M, U(IU,1), LDU,
$ DWORK(IUT), M )
IU = IU + NROW
END IF
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DGEMV( 'No transpose', L, M, -ONE, D, LDD,
$ DWORK(IUT), 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 50 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
50 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ DWORK(IUT), 1, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IUT = IUT + M
60 CONTINUE
C
ELSE
C
DO 80 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DGEMV( 'No transpose', L, M, -ONE, D, LDD,
$ U(IU,1), LDU, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 70 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
70 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IU,1), LDU, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IU = IU + 1
80 CONTINUE
C
END IF
C
ELSE
C
IF ( BLOCK ) THEN
SWITCH = .TRUE.
NROW = NRBL
C
DO 100 K = 1, NOBS
IF ( MOD( K-1, NROW ).EQ.0 .AND. SWITCH ) THEN
IUT = IUTRAN
IF ( K.GT.INIT ) THEN
NROW = NOBS - INIT
SWITCH = .FALSE.
END IF
CALL MA02AD( 'Full', NROW, M, U(IU,1), LDU,
$ DWORK(IUT), M )
IU = IU + NROW
END IF
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 90 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
90 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ DWORK(IUT), 1, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IUT = IUT + M
100 CONTINUE
C
ELSE
C
DO 120 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 110 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
110 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IU,1), LDU, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IU = IU + 1
120 CONTINUE
C
END IF
C
END IF
C
ELSE
C
DO 140 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0, 1,
$ ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N, A,
$ LDA, X0, 1 )
C
DO 130 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
130 CONTINUE
C
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
140 CONTINUE
C
END IF
C
C Compress the data using (sequential) QR factorization.
C Workspace: need v + 2*N;
C where v = s*L*(N + 1) + N + a + w.
C
JWORK = ITAU + N
IF ( FIRST ) THEN
C
C Compress the first data segment of Gamma.
C Workspace: need v + 2*N,
C prefer v + N + N*NB.
C
CALL DGEQRF( LDDW, N, DWORK(INIGAM), LDDW, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Apply the transformation to the right hand side part.
C Workspace: need v + N + 1,
C prefer v + N + NB.
C
CALL DORMQR( 'Left', 'Transpose', LDDW, 1, N, DWORK(INIGAM),
$ LDDW, DWORK(ITAU), DWORK(IRHS), LDDW,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
IF ( NCYC ) THEN
C
C Save the triangular factor of Gamma and the
C corresponding right hand side.
C
CALL DLACPY( 'Upper', N, NCP1, DWORK(INIGAM), LDDW,
$ DWORK(INIR), LDR )
END IF
ELSE
C
C Compress the current (but not the first) data segment of
C Gamma.
C Workspace: need v + N - 1.
C
CALL MB04OD( 'Full', N, 1, LDDW, DWORK(INIR), LDR,
$ DWORK(INIGAM), LDDW, DWORK(INIH), LDR,
$ DWORK(IRHS), LDDW, DWORK(ITAU), DWORK(JWORK) )
END IF
C
IUPNT = IUPNT + NOBS
IYPNT = IYPNT + NOBS
150 CONTINUE
C
C Estimate the reciprocal condition number of the triangular factor
C of the QR decomposition.
C Workspace: need u + 3*N, where
C u = t*L*(N + 1), if NCYCLE = 1;
C u = w, if NCYCLE > 1.
C
CALL DTRCON( '1-norm', 'Upper', 'No Transpose', N, DWORK(INIR),
$ LDR, RCOND, DWORK(IE), IWORK, IERR )
C
TOLL = TOL
IF ( TOLL.LE.ZERO )
$ TOLL = DLAMCH( 'Precision' )
IF ( RCOND.LE.TOLL**( TWO/THREE ) ) THEN
IWARN = 4
C
C The least squares problem is ill-conditioned.
C Use SVD to solve it.
C Workspace: need u + 6*N;
C prefer larger.
C
CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, DWORK(INIR+1),
$ LDR )
ISV = IE
JWORK = ISV + N
CALL DGELSS( N, N, 1, DWORK(INIR), LDR, DWORK(INIH), LDR,
$ DWORK(ISV), TOLL, RANK, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
IF ( IERR.GT.0 ) THEN
C
C Return if SVD algorithm did not converge.
C
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) - JWORK + 1 )
ELSE
C
C Find the least squares solution using QR decomposition only.
C
CALL DTRSV( 'Upper', 'No Transpose', 'Non Unit', N,
$ DWORK(INIR), LDR, DWORK(INIH), 1 )
END IF
C
C Return the estimated initial state of the system x0.
C
CALL DCOPY( N, DWORK(INIH), 1, X0, 1 )
C
DWORK(1) = MAXWRK
DWORK(2) = RCOND
C
RETURN
C
C *** End of IB01RD ***
END
|