summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/slicot/ib01px.f
blob: db5dcea86a7ba4fa946ca8c0ace7509cce2ce15b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
      SUBROUTINE IB01PX( JOB, NOBR, N, M, L, UF, LDUF, UN, LDUN, UL,
     $                   LDUL, PGAL, LDPGAL, K, LDK, R, LDR, X, B, LDB,
     $                   D, LDD, TOL, IWORK, DWORK, LDWORK, IWARN,
     $                   INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 2000.
C
C     PURPOSE
C
C     To build and solve the least squares problem  T*X = Kv,  and 
C     estimate the matrices B and D of a linear time-invariant (LTI)
C     state space model, using the solution  X,  and the singular
C     value decomposition information and other intermediate results,
C     provided by other routines. 
C
C     The matrix  T  is computed as a sum of Kronecker products,
C
C        T = T + kron(Uf(:,(i-1)*m+1:i*m),N_i),  for i = 1 : s,
C
C     (with  T  initialized by zero), where  Uf  is the triangular
C     factor of the QR factorization of the future input part (see 
C     SLICOT Library routine IB01ND),  N_i  is given by the i-th block
C     row of the matrix
C
C            [ Q_11  Q_12  ...  Q_1,s-2  Q_1,s-1  Q_1s ]   [ I_L  0  ] 
C            [ Q_12  Q_13  ...  Q_1,s-1    Q_1s    0   ]   [         ]
C        N = [ Q_13  Q_14  ...    Q_1s      0      0   ] * [         ],
C            [  :     :            :        :      :   ]   [         ]
C            [ Q_1s   0    ...     0        0      0   ]   [  0  GaL ]
C
C     and where
C
C               [   -L_1|1    ]          [ M_i-1 - L_1|i ]
C        Q_11 = [             ],  Q_1i = [               ],  i = 2:s,
C               [ I_L - L_2|1 ]          [     -L_2|i    ]
C
C     are  (n+L)-by-L  matrices, and  GaL  is built from the first  n  
C     relevant singular vectors,  GaL = Un(1:L(s-1),1:n),  computed 
C     by IB01ND.
C
C     The vector  Kv  is vec(K), with the matrix  K  defined by
C
C        K = [ K_1  K_2  K_3  ...  K_s ],
C
C     where  K_i = K(:,(i-1)*m+1:i*m),  i = 1:s,  is  (n+L)-by-m.
C     The given matrices are  Uf,  GaL,  and  
C
C            [ L_1|1  ...  L_1|s ]
C        L = [                   ],   (n+L)-by-L*s,
C            [ L_2|1  ...  L_2|s ]
C
C        M = [ M_1  ...  M_s-1 ],      n-by-L*(s-1),  and
C        K,                            (n+L)-by-m*s.
C
C     Matrix  M  is the pseudoinverse of the matrix  GaL,  computed by
C     SLICOT Library routine IB01PD.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies which of the matrices B and D should be
C             computed, as follows:
C             = 'B':  compute the matrix B, but not the matrix D;
C             = 'D':  compute both matrices B and D.
C
C     Input/Output Parameters
C
C     NOBR    (input) INTEGER
C             The number of block rows,  s,  in the input and output
C             Hankel matrices processed by other routines.  NOBR > 1.
C
C     N       (input) INTEGER
C             The order of the system.  NOBR > N > 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     L       (input) INTEGER
C             The number of system outputs.  L > 0.
C
C     UF      (input/output) DOUBLE PRECISION array, dimension 
C             ( LDUF,M*NOBR ) 
C             On entry, the leading  M*NOBR-by-M*NOBR  upper triangular
C             part of this array must contain the upper triangular 
C             factor of the QR factorization of the future input part,
C             as computed by SLICOT Library routine IB01ND.
C             The strict lower triangle need not be set to zero. 
C             On exit, the leading  M*NOBR-by-M*NOBR  upper triangular
C             part of this array is unchanged, and the strict lower 
C             triangle is set to zero.
C
C     LDUF    INTEGER
C             The leading dimension of the array  UF.
C             LDUF >= MAX( 1, M*NOBR ).
C
C     UN      (input) DOUBLE PRECISION array, dimension ( LDUN,N ) 
C             The leading  L*(NOBR-1)-by-N  part of this array must
C             contain the matrix  GaL,  i.e., the leading part of the
C             first  N  columns of the matrix  Un  of relevant singular
C             vectors.
C
C     LDUN    INTEGER
C             The leading dimension of the array  UN.
C             LDUN >= L*(NOBR-1).
C
C     UL      (input/output) DOUBLE PRECISION array, dimension 
C             ( LDUL,L*NOBR )
C             On entry, the leading  (N+L)-by-L*NOBR  part of this array
C             must contain the given matrix  L.
C             On exit, if  M > 0,  the leading  (N+L)-by-L*NOBR  part of
C             this array is overwritten by the matrix  
C             [ Q_11  Q_12  ...  Q_1,s-2  Q_1,s-1  Q_1s ]. 
C
C     LDUL    INTEGER
C             The leading dimension of the array  UL.  LDUL >= N+L.
C
C     PGAL    (input) DOUBLE PRECISION array, dimension 
C             ( LDPGAL,L*(NOBR-1) )
C             The leading  N-by-L*(NOBR-1)  part of this array must
C             contain the pseudoinverse of the matrix  GaL,  computed by
C             SLICOT Library routine IB01PD.
C
C     LDPGAL  INTEGER
C             The leading dimension of the array  PGAL.  LDPGAL >= N.
C
C     K       (input) DOUBLE PRECISION array, dimension ( LDK,M*NOBR )
C             The leading  (N+L)-by-M*NOBR  part of this array must
C             contain the given matrix  K.
C            
C     LDK     INTEGER
C             The leading dimension of the array  K.  LDK >= N+L.
C
C     R       (output) DOUBLE PRECISION array, dimension ( LDR,M*(N+L) )
C             The leading  (N+L)*M*NOBR-by-M*(N+L)  part of this array
C             contains details of the complete orthogonal factorization
C             of the coefficient matrix  T  of the least squares problem
C             which is solved for getting the system matrices B and D.
C            
C     LDR     INTEGER
C             The leading dimension of the array  R.
C             LDR >= MAX( 1, (N+L)*M*NOBR ).
C            
C     X       (output) DOUBLE PRECISION array, dimension 
C             ( (N+L)*M*NOBR ) 
C             The leading  M*(N+L)  elements of this array contain the
C             least squares solution of the system  T*X = Kv.
C             The remaining elements are used as workspace (to store the
C             corresponding part of the vector Kv = vec(K)).
C            
C     B       (output) DOUBLE PRECISION array, dimension ( LDB,M )
C             The leading N-by-M part of this array contains the system
C             input matrix.  
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= N.
C
C     D       (output) DOUBLE PRECISION array, dimension ( LDD,M )
C             If  JOB = 'D',  the leading L-by-M part of this array 
C             contains the system input-output matrix.  
C             If  JOB = 'B',  this array is not referenced.  
C
C     LDD     INTEGER
C             The leading dimension of the array D.
C             LDD >= L, if  JOB = 'D';
C             LDD >= 1, if  JOB = 'B'.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used for estimating the rank of
C             matrices. If the user sets  TOL > 0,  then the given value
C             of  TOL  is used as a lower bound for the reciprocal
C             condition number;  an m-by-n matrix whose estimated
C             condition number is less than  1/TOL  is considered to  
C             be of full rank.  If the user sets  TOL <= 0,  then an 
C             implicitly computed, default tolerance, defined by 
C             TOLDEF = m*n*EPS,  is used instead, where  EPS  is the 
C             relative machine precision (see LAPACK Library routine 
C             DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension ( M*(N+L) )
C
C     DWORK   DOUBLE PRECISION array, dimension ( LDWORK )
C             On exit, if  INFO = 0,  DWORK(1) returns the optimal value
C             of LDWORK,  and, if  M > 0,  DWORK(2)  contains the  
C             reciprocal condition number of the triangular factor of
C             the matrix  T.
C             On exit, if  INFO = -26,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( (N+L)*(N+L), 4*M*(N+L)+1 ).
C             For good performance,  LDWORK  should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 4:  the least squares problem to be solved has a
C                   rank-deficient coefficient matrix. 
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix  T  is computed, evaluating the sum of Kronecker
C     products, and then the linear system  T*X = Kv  is solved in a
C     least squares sense. The matrices  B  and  D  are then directly
C     obtained from the least squares solution.
C
C     REFERENCES
C
C     [1] Verhaegen M., and Dewilde, P.
C         Subspace Model Identification. Part 1: The output-error 
C         state-space model identification class of algorithms.
C         Int. J. Control, 56, pp. 1187-1210, 1992.
C
C     [2] Van Overschee, P., and De Moor, B.
C         N4SID: Two Subspace Algorithms for the Identification
C         of Combined Deterministic-Stochastic Systems.
C         Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C     [3] Van Overschee, P.
C         Subspace Identification : Theory - Implementation -
C         Applications.
C         Ph. D. Thesis, Department of Electrical Engineering,
C         Katholieke Universiteit Leuven, Belgium, Feb. 1995.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Universiteit Leuven, Feb. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Identification methods; least squares solutions; multivariable
C     systems; QR decomposition; singular value decomposition.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO  = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      DOUBLE PRECISION   TOL
      INTEGER            INFO, IWARN, L, LDB, LDD, LDK, LDPGAL, LDR,
     $                   LDUF, LDUL, LDUN, LDWORK, M, N, NOBR
      CHARACTER          JOB
C     .. Array Arguments ..
      DOUBLE PRECISION   B(LDB, *), D(LDD, *), DWORK(*), K(LDK, *),  
     $                   PGAL(LDPGAL, *), R(LDR, *), UF(LDUF, *), 
     $                   UL(LDUL, *), UN(LDUN, *), X(*)
      INTEGER            IWORK( * )
C     .. Local Scalars ..
      DOUBLE PRECISION   RCOND, TOLL
      INTEGER            I, IERR, J, JWORK, LDUN2, LNOBR, LP1, MAXWRK,
     $                   MINWRK, MKRON, MNOBR, NKRON, NP1, NPL, RANK
      LOGICAL            WITHB, WITHD
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL           DGELSY, DGEMM, DLACPY, DLASET, DTRCON, MB01VD,
     $                   XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      WITHD = LSAME( JOB, 'D' )
      WITHB = LSAME( JOB, 'B' ) .OR. WITHD
      MNOBR = M*NOBR
      LNOBR = L*NOBR
      LDUN2 = LNOBR - L
      LP1   = L + 1
      NP1   = N + 1
      NPL   = N + L
      IWARN = 0
      INFO  = 0
C
C     Check the scalar input parameters.
C
      IF( .NOT.WITHB ) THEN
         INFO = -1
      ELSE IF( NOBR.LE.1 ) THEN
         INFO = -2
      ELSE IF( N.GE.NOBR .OR. N.LE.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( L.LE.0 ) THEN
         INFO = -5
      ELSE IF( LDUF.LT.MAX( 1, MNOBR ) ) THEN
         INFO = -7
      ELSE IF( LDUN.LT.LDUN2 ) THEN
         INFO = -9
      ELSE IF( LDUL.LT.NPL ) THEN
         INFO = -11
      ELSE IF( LDPGAL.LT.N ) THEN
         INFO = -13
      ELSE IF( LDK.LT.NPL ) THEN
         INFO = -15
      ELSE IF( LDR.LT.MAX( 1, MNOBR*NPL ) ) THEN
         INFO = -17
      ELSE IF( LDB.LT.N ) THEN
         INFO = -20
      ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L ) ) THEN
         INFO = -22
      ELSE IF( LDWORK.GE.1 ) THEN
C
C        Compute workspace.
C        (Note: Comments in the code beginning "Workspace:" describe the
C         minimal amount of workspace needed at that point in the code,
C         as well as the preferred amount for good performance.
C         NB refers to the optimal block size for the immediately
C         following subroutine, as returned by ILAENV.)
C
         MINWRK = MAX( NPL*NPL, 4*M*NPL + 1 )
C
         IF ( LDWORK.LT.MINWRK ) THEN
            INFO = -26
            DWORK( 1 ) = MINWRK
         END IF
      END IF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'IB01PX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( M.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Construct the matrix  [ Q_11  Q_12  ...  Q_1,s-1  Q_1s ]  in  UL.
C
      DO 20 J = 1, L
C
         DO 10 I = 1, NPL
            UL(I,J) = -UL(I,J)
   10    CONTINUE
C
         UL(N+J,J) = ONE + UL(N+J,J)
   20 CONTINUE
C
      DO 50 J = LP1, LNOBR
C
         DO 30 I = 1, N
            UL(I,J) = PGAL(I,J-L) - UL(I,J)
   30    CONTINUE
C
         DO 40 I = NP1, NPL
            UL(I,J) = -UL(I,J)
   40    CONTINUE
C
   50 CONTINUE
C
C     Compute the coefficient matrix T using Kronecker products.
C     Workspace: (N+L)*(N+L).
C     In the same loop, vectorize K in X.
C
      CALL DLASET( 'Full', MNOBR*NPL, M*NPL, ZERO, ZERO, R, LDR )
      CALL DLASET( 'Lower', MNOBR-1, MNOBR-1, ZERO, ZERO, UF(2,1), 
     $             LDUF )
      JWORK = NPL*L + 1
C
      DO 60 I = 1, NOBR
         CALL DLACPY( 'Full', NPL, L, UL(1,(I-1)*L+1), LDUL, DWORK,
     $                NPL )
         IF ( I.LT.NOBR ) THEN
            CALL DGEMM ( 'NoTranspose', 'NoTranspose', NPL, N,
     $                   L*(NOBR-I), ONE, UL(1,I*L+1), LDUL, UN, LDUN,
     $                   ZERO, DWORK(JWORK), NPL )
         ELSE
            CALL DLASET( 'Full', NPL, N, ZERO, ZERO, DWORK(JWORK), NPL )
         END IF
         CALL MB01VD( 'NoTranspose', 'NoTranspose', MNOBR, M, NPL, 
     $                NPL, ONE, ONE, UF(1,(I-1)*M+1), LDUF, DWORK, 
     $                NPL, R, LDR, MKRON, NKRON, IERR )
         CALL DLACPY( 'Full', NPL, M, K(1,(I-1)*M+1), LDK, 
     $                X((I-1)*NKRON+1), NPL )
   60 CONTINUE
C
C     Compute the tolerance.
C
      TOLL = TOL
      IF( TOLL.LE.ZERO ) 
     $   TOLL = MKRON*NKRON*DLAMCH( 'Precision' )
C
C     Solve the least square problem  T*X = vec(K).
C     Workspace:  need   4*M*(N+L)+1;
C                 prefer 3*M*(N+L)+(M*(N+L)+1)*NB. 
C
      DO 70 I = 1, NKRON
         IWORK(I) = 0
   70 CONTINUE
C
      CALL DGELSY( MKRON, NKRON, 1, R, LDR, X, MKRON, IWORK, TOLL, RANK,
     $             DWORK, LDWORK, IERR )
      MAXWRK = DWORK(1)
C
C     Compute the reciprocal of the condition number of the triangular 
C     factor  R  of  T.
C     Workspace: need 3*M*(N+L).
C
      CALL DTRCON( '1-norm', 'Upper', 'NonUnit', NKRON, R, LDR, RCOND,
     $             DWORK, IWORK, IERR )
C
      IF ( RANK.LT.NKRON ) THEN
C     
C        The least squares problem is rank-deficient.
C     
         IWARN = 4
      END IF
C
C     Construct the matrix  D,  if needed.
C
      IF ( WITHD ) 
     $   CALL DLACPY( 'Full', L, M, X, NPL, D, LDD )
C
C     Construct the matrix  B.
C
      CALL DLACPY( 'Full', N, M, X(LP1), NPL, B, LDB )
C
C     Return optimal workspace in DWORK(1) and reciprocal condition
C     number in  DWORK(2).
C
      DWORK(1) = MAX( MINWRK, MAXWRK )
      DWORK(2) = RCOND
C
      RETURN
C
C *** Last line of IB01PX ***
      END