1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
SUBROUTINE IB01PX( JOB, NOBR, N, M, L, UF, LDUF, UN, LDUN, UL,
$ LDUL, PGAL, LDPGAL, K, LDK, R, LDR, X, B, LDB,
$ D, LDD, TOL, IWORK, DWORK, LDWORK, IWARN,
$ INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To build and solve the least squares problem T*X = Kv, and
C estimate the matrices B and D of a linear time-invariant (LTI)
C state space model, using the solution X, and the singular
C value decomposition information and other intermediate results,
C provided by other routines.
C
C The matrix T is computed as a sum of Kronecker products,
C
C T = T + kron(Uf(:,(i-1)*m+1:i*m),N_i), for i = 1 : s,
C
C (with T initialized by zero), where Uf is the triangular
C factor of the QR factorization of the future input part (see
C SLICOT Library routine IB01ND), N_i is given by the i-th block
C row of the matrix
C
C [ Q_11 Q_12 ... Q_1,s-2 Q_1,s-1 Q_1s ] [ I_L 0 ]
C [ Q_12 Q_13 ... Q_1,s-1 Q_1s 0 ] [ ]
C N = [ Q_13 Q_14 ... Q_1s 0 0 ] * [ ],
C [ : : : : : ] [ ]
C [ Q_1s 0 ... 0 0 0 ] [ 0 GaL ]
C
C and where
C
C [ -L_1|1 ] [ M_i-1 - L_1|i ]
C Q_11 = [ ], Q_1i = [ ], i = 2:s,
C [ I_L - L_2|1 ] [ -L_2|i ]
C
C are (n+L)-by-L matrices, and GaL is built from the first n
C relevant singular vectors, GaL = Un(1:L(s-1),1:n), computed
C by IB01ND.
C
C The vector Kv is vec(K), with the matrix K defined by
C
C K = [ K_1 K_2 K_3 ... K_s ],
C
C where K_i = K(:,(i-1)*m+1:i*m), i = 1:s, is (n+L)-by-m.
C The given matrices are Uf, GaL, and
C
C [ L_1|1 ... L_1|s ]
C L = [ ], (n+L)-by-L*s,
C [ L_2|1 ... L_2|s ]
C
C M = [ M_1 ... M_s-1 ], n-by-L*(s-1), and
C K, (n+L)-by-m*s.
C
C Matrix M is the pseudoinverse of the matrix GaL, computed by
C SLICOT Library routine IB01PD.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies which of the matrices B and D should be
C computed, as follows:
C = 'B': compute the matrix B, but not the matrix D;
C = 'D': compute both matrices B and D.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C Hankel matrices processed by other routines. NOBR > 1.
C
C N (input) INTEGER
C The order of the system. NOBR > N > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C UF (input/output) DOUBLE PRECISION array, dimension
C ( LDUF,M*NOBR )
C On entry, the leading M*NOBR-by-M*NOBR upper triangular
C part of this array must contain the upper triangular
C factor of the QR factorization of the future input part,
C as computed by SLICOT Library routine IB01ND.
C The strict lower triangle need not be set to zero.
C On exit, the leading M*NOBR-by-M*NOBR upper triangular
C part of this array is unchanged, and the strict lower
C triangle is set to zero.
C
C LDUF INTEGER
C The leading dimension of the array UF.
C LDUF >= MAX( 1, M*NOBR ).
C
C UN (input) DOUBLE PRECISION array, dimension ( LDUN,N )
C The leading L*(NOBR-1)-by-N part of this array must
C contain the matrix GaL, i.e., the leading part of the
C first N columns of the matrix Un of relevant singular
C vectors.
C
C LDUN INTEGER
C The leading dimension of the array UN.
C LDUN >= L*(NOBR-1).
C
C UL (input/output) DOUBLE PRECISION array, dimension
C ( LDUL,L*NOBR )
C On entry, the leading (N+L)-by-L*NOBR part of this array
C must contain the given matrix L.
C On exit, if M > 0, the leading (N+L)-by-L*NOBR part of
C this array is overwritten by the matrix
C [ Q_11 Q_12 ... Q_1,s-2 Q_1,s-1 Q_1s ].
C
C LDUL INTEGER
C The leading dimension of the array UL. LDUL >= N+L.
C
C PGAL (input) DOUBLE PRECISION array, dimension
C ( LDPGAL,L*(NOBR-1) )
C The leading N-by-L*(NOBR-1) part of this array must
C contain the pseudoinverse of the matrix GaL, computed by
C SLICOT Library routine IB01PD.
C
C LDPGAL INTEGER
C The leading dimension of the array PGAL. LDPGAL >= N.
C
C K (input) DOUBLE PRECISION array, dimension ( LDK,M*NOBR )
C The leading (N+L)-by-M*NOBR part of this array must
C contain the given matrix K.
C
C LDK INTEGER
C The leading dimension of the array K. LDK >= N+L.
C
C R (output) DOUBLE PRECISION array, dimension ( LDR,M*(N+L) )
C The leading (N+L)*M*NOBR-by-M*(N+L) part of this array
C contains details of the complete orthogonal factorization
C of the coefficient matrix T of the least squares problem
C which is solved for getting the system matrices B and D.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 1, (N+L)*M*NOBR ).
C
C X (output) DOUBLE PRECISION array, dimension
C ( (N+L)*M*NOBR )
C The leading M*(N+L) elements of this array contain the
C least squares solution of the system T*X = Kv.
C The remaining elements are used as workspace (to store the
C corresponding part of the vector Kv = vec(K)).
C
C B (output) DOUBLE PRECISION array, dimension ( LDB,M )
C The leading N-by-M part of this array contains the system
C input matrix.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= N.
C
C D (output) DOUBLE PRECISION array, dimension ( LDD,M )
C If JOB = 'D', the leading L-by-M part of this array
C contains the system input-output matrix.
C If JOB = 'B', this array is not referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if JOB = 'D';
C LDD >= 1, if JOB = 'B'.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension ( M*(N+L) )
C
C DWORK DOUBLE PRECISION array, dimension ( LDWORK )
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, if M > 0, DWORK(2) contains the
C reciprocal condition number of the triangular factor of
C the matrix T.
C On exit, if INFO = -26, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( (N+L)*(N+L), 4*M*(N+L)+1 ).
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problem to be solved has a
C rank-deficient coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix T is computed, evaluating the sum of Kronecker
C products, and then the linear system T*X = Kv is solved in a
C least squares sense. The matrices B and D are then directly
C obtained from the least squares solution.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Van Overschee, P., and De Moor, B.
C N4SID: Two Subspace Algorithms for the Identification
C of Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [3] Van Overschee, P.
C Subspace Identification : Theory - Implementation -
C Applications.
C Ph. D. Thesis, Department of Electrical Engineering,
C Katholieke Universiteit Leuven, Belgium, Feb. 1995.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Universiteit Leuven, Feb. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDB, LDD, LDK, LDPGAL, LDR,
$ LDUF, LDUL, LDUN, LDWORK, M, N, NOBR
CHARACTER JOB
C .. Array Arguments ..
DOUBLE PRECISION B(LDB, *), D(LDD, *), DWORK(*), K(LDK, *),
$ PGAL(LDPGAL, *), R(LDR, *), UF(LDUF, *),
$ UL(LDUL, *), UN(LDUN, *), X(*)
INTEGER IWORK( * )
C .. Local Scalars ..
DOUBLE PRECISION RCOND, TOLL
INTEGER I, IERR, J, JWORK, LDUN2, LNOBR, LP1, MAXWRK,
$ MINWRK, MKRON, MNOBR, NKRON, NP1, NPL, RANK
LOGICAL WITHB, WITHD
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DGELSY, DGEMM, DLACPY, DLASET, DTRCON, MB01VD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
WITHD = LSAME( JOB, 'D' )
WITHB = LSAME( JOB, 'B' ) .OR. WITHD
MNOBR = M*NOBR
LNOBR = L*NOBR
LDUN2 = LNOBR - L
LP1 = L + 1
NP1 = N + 1
NPL = N + L
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.WITHB ) THEN
INFO = -1
ELSE IF( NOBR.LE.1 ) THEN
INFO = -2
ELSE IF( N.GE.NOBR .OR. N.LE.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( L.LE.0 ) THEN
INFO = -5
ELSE IF( LDUF.LT.MAX( 1, MNOBR ) ) THEN
INFO = -7
ELSE IF( LDUN.LT.LDUN2 ) THEN
INFO = -9
ELSE IF( LDUL.LT.NPL ) THEN
INFO = -11
ELSE IF( LDPGAL.LT.N ) THEN
INFO = -13
ELSE IF( LDK.LT.NPL ) THEN
INFO = -15
ELSE IF( LDR.LT.MAX( 1, MNOBR*NPL ) ) THEN
INFO = -17
ELSE IF( LDB.LT.N ) THEN
INFO = -20
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L ) ) THEN
INFO = -22
ELSE IF( LDWORK.GE.1 ) THEN
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MINWRK = MAX( NPL*NPL, 4*M*NPL + 1 )
C
IF ( LDWORK.LT.MINWRK ) THEN
INFO = -26
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01PX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( M.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Construct the matrix [ Q_11 Q_12 ... Q_1,s-1 Q_1s ] in UL.
C
DO 20 J = 1, L
C
DO 10 I = 1, NPL
UL(I,J) = -UL(I,J)
10 CONTINUE
C
UL(N+J,J) = ONE + UL(N+J,J)
20 CONTINUE
C
DO 50 J = LP1, LNOBR
C
DO 30 I = 1, N
UL(I,J) = PGAL(I,J-L) - UL(I,J)
30 CONTINUE
C
DO 40 I = NP1, NPL
UL(I,J) = -UL(I,J)
40 CONTINUE
C
50 CONTINUE
C
C Compute the coefficient matrix T using Kronecker products.
C Workspace: (N+L)*(N+L).
C In the same loop, vectorize K in X.
C
CALL DLASET( 'Full', MNOBR*NPL, M*NPL, ZERO, ZERO, R, LDR )
CALL DLASET( 'Lower', MNOBR-1, MNOBR-1, ZERO, ZERO, UF(2,1),
$ LDUF )
JWORK = NPL*L + 1
C
DO 60 I = 1, NOBR
CALL DLACPY( 'Full', NPL, L, UL(1,(I-1)*L+1), LDUL, DWORK,
$ NPL )
IF ( I.LT.NOBR ) THEN
CALL DGEMM ( 'NoTranspose', 'NoTranspose', NPL, N,
$ L*(NOBR-I), ONE, UL(1,I*L+1), LDUL, UN, LDUN,
$ ZERO, DWORK(JWORK), NPL )
ELSE
CALL DLASET( 'Full', NPL, N, ZERO, ZERO, DWORK(JWORK), NPL )
END IF
CALL MB01VD( 'NoTranspose', 'NoTranspose', MNOBR, M, NPL,
$ NPL, ONE, ONE, UF(1,(I-1)*M+1), LDUF, DWORK,
$ NPL, R, LDR, MKRON, NKRON, IERR )
CALL DLACPY( 'Full', NPL, M, K(1,(I-1)*M+1), LDK,
$ X((I-1)*NKRON+1), NPL )
60 CONTINUE
C
C Compute the tolerance.
C
TOLL = TOL
IF( TOLL.LE.ZERO )
$ TOLL = MKRON*NKRON*DLAMCH( 'Precision' )
C
C Solve the least square problem T*X = vec(K).
C Workspace: need 4*M*(N+L)+1;
C prefer 3*M*(N+L)+(M*(N+L)+1)*NB.
C
DO 70 I = 1, NKRON
IWORK(I) = 0
70 CONTINUE
C
CALL DGELSY( MKRON, NKRON, 1, R, LDR, X, MKRON, IWORK, TOLL, RANK,
$ DWORK, LDWORK, IERR )
MAXWRK = DWORK(1)
C
C Compute the reciprocal of the condition number of the triangular
C factor R of T.
C Workspace: need 3*M*(N+L).
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', NKRON, R, LDR, RCOND,
$ DWORK, IWORK, IERR )
C
IF ( RANK.LT.NKRON ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 4
END IF
C
C Construct the matrix D, if needed.
C
IF ( WITHD )
$ CALL DLACPY( 'Full', L, M, X, NPL, D, LDD )
C
C Construct the matrix B.
C
CALL DLACPY( 'Full', N, M, X(LP1), NPL, B, LDB )
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C number in DWORK(2).
C
DWORK(1) = MAX( MINWRK, MAXWRK )
DWORK(2) = RCOND
C
RETURN
C
C *** Last line of IB01PX ***
END
|