1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
|
SUBROUTINE IB01ND( METH, JOBD, NOBR, M, L, R, LDR, SV, TOL, IWORK,
$ DWORK, LDWORK, IWARN, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To find the singular value decomposition (SVD) giving the system
C order, using the triangular factor of the concatenated block
C Hankel matrices. Related preliminary calculations needed for
C computing the system matrices are also performed.
C
C ARGUMENTS
C
C Mode Parameters
C
C METH CHARACTER*1
C Specifies the subspace identification method to be used,
C as follows:
C = 'M': MOESP algorithm with past inputs and outputs;
C = 'N': N4SID algorithm.
C
C JOBD CHARACTER*1
C Specifies whether or not the matrices B and D should later
C be computed using the MOESP approach, as follows:
C = 'M': the matrices B and D should later be computed
C using the MOESP approach;
C = 'N': the matrices B and D should not be computed using
C the MOESP approach.
C This parameter is not relevant for METH = 'N'.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C block Hankel matrices. NOBR > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C R (input/output) DOUBLE PRECISION array, dimension
C ( LDR,2*(M+L)*NOBR )
C On entry, the leading 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper
C triangular part of this array must contain the upper
C triangular factor R from the QR factorization of the
C concatenated block Hankel matrices. Denote R_ij,
C i,j = 1:4, the ij submatrix of R, partitioned by
C M*NOBR, M*NOBR, L*NOBR, and L*NOBR rows and columns.
C On exit, if INFO = 0, the leading
C 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper triangular part of this
C array contains the matrix S, the processed upper
C triangular factor R, as required by other subroutines.
C Specifically, let S_ij, i,j = 1:4, be the ij submatrix
C of S, partitioned by M*NOBR, L*NOBR, M*NOBR, and
C L*NOBR rows and columns. The submatrix S_22 contains
C the matrix of left singular vectors needed subsequently.
C Useful information is stored in S_11 and in the
C block-column S_14 : S_44. For METH = 'M' and JOBD = 'M',
C the upper triangular part of S_31 contains the upper
C triangular factor in the QR factorization of the matrix
C R_1c = [ R_12' R_22' R_11' ]', and S_12 contains the
C corresponding leading part of the transformed matrix
C R_2c = [ R_13' R_23' R_14' ]'. For METH = 'N', the
C subarray S_41 : S_43 contains the transpose of the
C matrix contained in S_14 : S_34.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 2*(M+L)*NOBR, 3*M*NOBR ),
C for METH = 'M' and JOBD = 'M';
C LDR >= 2*(M+L)*NOBR, for METH = 'M' and JOBD = 'N' or
C for METH = 'N'.
C
C SV (output) DOUBLE PRECISION array, dimension ( L*NOBR )
C The singular values of the relevant part of the triangular
C factor from the QR factorization of the concatenated block
C Hankel matrices.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C This parameter is not used for METH = 'M'.
C
C Workspace
C
C IWORK INTEGER array, dimension ((M+L)*NOBR)
C This parameter is not referenced for METH = 'M'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, for METH = 'N', DWORK(2) and DWORK(3)
C contain the reciprocal condition numbers of the
C triangular factors of the matrices U_f and r_1 [6].
C On exit, if INFO = -12, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( (2*M-1)*NOBR, (M+L)*NOBR, 5*L*NOBR ),
C if METH = 'M' and JOBD = 'M';
C LDWORK >= 5*L*NOBR, if METH = 'M' and JOBD = 'N';
C LDWORK >= 5*(M+L)*NOBR, if METH = 'N'.
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problems with coefficient matrix
C U_f, used for computing the weighted oblique
C projection (for METH = 'N'), have a rank-deficient
C coefficient matrix;
C = 5: the least squares problem with coefficient matrix
C r_1 [6], used for computing the weighted oblique
C projection (for METH = 'N'), has a rank-deficient
C coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge.
C
C METHOD
C
C A singular value decomposition (SVD) of a certain matrix is
C computed, which reveals the order n of the system as the number
C of "non-zero" singular values. For the MOESP approach, this matrix
C is [ R_24' R_34' ]' := R(ms+1:(2m+l)s,(2m+l)s+1:2(m+l)s),
C where R is the upper triangular factor R constructed by SLICOT
C Library routine IB01MD. For the N4SID approach, a weighted
C oblique projection is computed from the upper triangular factor R
C and its SVD is then found.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Verhaegen M.
C Subspace Model Identification. Part 3: Analysis of the
C ordinary output-error state-space model identification
C algorithm.
C Int. J. Control, 58, pp. 555-586, 1993.
C
C [3] Verhaegen M.
C Identification of the deterministic part of MIMO state space
C models given in innovations form from input-output data.
C Automatica, Vol.30, No.1, pp.61-74, 1994.
C
C [4] Van Overschee, P., and De Moor, B.
C N4SID: Subspace Algorithms for the Identification of
C Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [5] Van Overschee, P., and De Moor, B.
C Subspace Identification for Linear Systems: Theory -
C Implementation - Applications.
C Kluwer Academic Publishers, Boston/London/Dordrecht, 1996.
C
C [6] Sima, V.
C Subspace-based Algorithms for Multivariable System
C Identification.
C Studies in Informatics and Control, 5, pp. 335-344, 1996.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C 3
C The algorithm requires 0(((m+l)s) ) floating point operations.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999.
C
C REVISIONS
C
C Feb. 2000, Feb. 2001.
C
C KEYWORDS
C
C Identification methods, multivariable systems, QR decomposition,
C singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDR, LDWORK, M, NOBR
CHARACTER JOBD, METH
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), R(LDR, *), SV(*)
INTEGER IWORK(*)
C .. Local Scalars ..
DOUBLE PRECISION EPS, RCOND1, RCOND2, SVLMAX, THRESH, TOLL
INTEGER I, IERR, ITAU, ITAU2, ITAU3, JWORK, LLMNOB,
$ LLNOBR, LMMNOB, LMNOBR, LNOBR, MAXWRK, MINWRK,
$ MMNOBR, MNOBR, NR, NR2, NR3, NR4, NRSAVE, RANK,
$ RANK1
LOGICAL JOBDM, MOESP, N4SID
C .. Local Arrays ..
DOUBLE PRECISION DUM(1), SVAL(3)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEQRF, DLACPY, DLASET, DORMQR, DSWAP,
$ DTRCON, MA02AD, MB03OD, MB03UD, MB04ID, MB04IY,
$ MB04OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MOESP = LSAME( METH, 'M' )
N4SID = LSAME( METH, 'N' )
JOBDM = LSAME( JOBD, 'M' )
MNOBR = M*NOBR
LNOBR = L*NOBR
LLNOBR = LNOBR + LNOBR
LMNOBR = LNOBR + MNOBR
MMNOBR = MNOBR + MNOBR
LMMNOB = MMNOBR + LNOBR
NR = LMNOBR + LMNOBR
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.( MOESP .OR. N4SID ) ) THEN
INFO = -1
ELSE IF( MOESP .AND. .NOT.( JOBDM .OR. LSAME( JOBD, 'N' ) ) ) THEN
INFO = -2
ELSE IF( NOBR.LE.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( L.LE.0 ) THEN
INFO = -5
ELSE IF( LDR.LT.NR .OR. ( MOESP .AND. JOBDM .AND.
$ LDR.LT.3*MNOBR ) ) THEN
INFO = -7
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MINWRK = 1
IF ( LDWORK.GE.1 ) THEN
IF ( MOESP ) THEN
MINWRK = 5*LNOBR
IF ( JOBDM )
$ MINWRK = MAX( MMNOBR - NOBR, LMNOBR, MINWRK )
MAXWRK = LNOBR + LNOBR*ILAENV( 1, 'DGEQRF', ' ', LMNOBR,
$ LNOBR, -1, -1 )
ELSE
C
MINWRK = MAX( MINWRK, 5*LMNOBR )
MAXWRK = MAX( MNOBR + MNOBR*ILAENV( 1, 'DGEQRF', ' ',
$ MMNOBR, MNOBR, -1, -1 ),
$ MNOBR + LLNOBR*ILAENV( 1, 'DORMQR', 'LT',
$ MMNOBR, LLNOBR, MNOBR, -1 ) )
MAXWRK = MAX( MAXWRK, MNOBR + LNOBR*ILAENV( 1, 'DORMQR',
$ 'LN', MMNOBR, LNOBR, MNOBR,
$ -1 ) )
MAXWRK = MAX( MAXWRK, LNOBR + LNOBR*ILAENV( 1, 'DGEQRF',
$ ' ', LMMNOB, LNOBR, -1, -1 ) )
END IF
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -12
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01ND', -INFO )
RETURN
END IF
C
C Compute pointers to the needed blocks of R.
C
NR2 = MNOBR + 1
NR3 = MMNOBR + 1
NR4 = LMMNOB + 1
ITAU = 1
JWORK = ITAU + MNOBR
C
IF( MOESP ) THEN
C
C MOESP approach.
C
IF( M.GT.0 .AND. JOBDM ) THEN
C
C Rearrange the blocks of R:
C Copy the (1,1) block into the position (3,2) and
C copy the (1,4) block into (3,3).
C
CALL DLACPY( 'Upper', MNOBR, MNOBR, R, LDR, R(NR3,NR2),
$ LDR )
CALL DLACPY( 'Full', MNOBR, LNOBR, R(1,NR4), LDR,
$ R(NR3,NR3), LDR )
C
C Using structure, triangularize the matrix
C R_1c = [ R_12' R_22' R_11' ]'
C and then apply the transformations to the matrix
c R_2c = [ R_13' R_23' R_14' ]'.
C Workspace: need M*NOBR + MAX(M-1,L)*NOBR.
C
CALL MB04OD( 'Upper', MNOBR, LNOBR, MNOBR, R(NR2,NR2), LDR,
$ R(NR3,NR2), LDR, R(NR2,NR3), LDR, R(NR3,NR3),
$ LDR, DWORK(ITAU), DWORK(JWORK) )
CALL MB04ID( MMNOBR, MNOBR, MNOBR-1, LNOBR, R(1,NR2), LDR,
$ R(1,NR3), LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Copy the leading M*NOBR x M*NOBR and M*NOBR x L*NOBR
C submatrices of R_1c and R_2c, respectively, into their
C final positions, required by SLICOT Library routine IB01PD.
C
CALL DLACPY( 'Upper', MNOBR, MNOBR, R(1,NR2), LDR,
$ R(LMNOBR+1,1), LDR )
CALL DLACPY( 'Full', MNOBR, LNOBR, R(1,NR3), LDR, R(1,NR2),
$ LDR )
END IF
C
C Copy [ R_24' R_34' ]' in [ R_22' R_32' ]'.
C
CALL DLACPY( 'Full', LMNOBR, LNOBR, R(NR2,NR4), LDR,
$ R(NR2,NR2), LDR )
C
C Triangularize the matrix in [ R_22' R_32' ]'.
C Workspace: need 2*L*NOBR; prefer L*NOBR + L*NOBR*NB.
C
JWORK = ITAU + LNOBR
CALL DGEQRF( LMNOBR, LNOBR, R(NR2,NR2), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
ELSE
C
C N4SID approach.
C
DUM(1) = ZERO
LLMNOB = LLNOBR + MNOBR
C
C Set the precision parameters. A threshold value EPS**(2/3) is
C used for deciding to use pivoting or not, where EPS is the
C relative machine precision (see LAPACK Library routine DLAMCH).
C
TOLL = TOL
EPS = DLAMCH( 'Precision' )
THRESH = EPS**( TWO/THREE )
C
IF( M.GT.0 ) THEN
C
C For efficiency of later calculations, interchange the first
C two block-columns. The corresponding submatrices are
C redefined according to their new position.
C
DO 10 I = 1, MNOBR
CALL DSWAP( I, R(1,I), 1, R(1,MNOBR+I), 1 )
CALL DCOPY( MNOBR, R(I+1,MNOBR+I), 1, R(I+1,I), 1 )
CALL DCOPY( MMNOBR-I, DUM, 0, R(I+1,MNOBR+I), 1 )
10 CONTINUE
C
C Now,
C
C U_f = [ R_11' R_21' 0 0 ]',
C U_p = [ R_12' 0 0 0 ]',
C Y_p = [ R_13' R_23' R_33' 0 ]', and
C Y_f = [ R_14' R_24' R_34' R_44' ]',
C
C where R_21, R_12, R_33, and R_44 are upper triangular.
C Define W_p := [ U_p Y_p ].
C
C Prepare the computation of residuals of the two least
C squares problems giving the weighted oblique projection P:
C
C r_1 = W_p - U_f X_1, X_1 = arg min || U_f X - W_p ||,
C r_2 = Y_f - U_f X_2, X_2 = arg min || U_f X - Y_f ||,
C
C P = (arg min || r_1 X - r_2 ||)' r_1'. (1)
C
C Alternately, P' is given by the projection
C P' = Q_1 (Q_1)' r_2,
C where Q_1 contains the first k columns of the orthogonal
C matrix in the QR factorization of r_1, k := rank(r_1).
C
C Triangularize the matrix U_f = q r (using structure), and
C apply the transformation q' to the corresponding part of
C the matrices W_p, and Y_f.
C Workspace: need 2*(M+L)*NOBR.
C
CALL MB04ID( MMNOBR, MNOBR, MNOBR-1, LLMNOB, R, LDR,
$ R(1,NR2), LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Save updated Y_f (transposed) in the last block-row of R.
C
CALL MA02AD( 'Full', LMMNOB, LNOBR, R(1,NR4), LDR, R(NR4,1),
$ LDR )
C
C Check the condition of the triangular factor r and decide
C to use pivoting or not.
C Workspace: need 4*M*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', MNOBR, R, LDR,
$ RCOND1, DWORK(JWORK), IWORK, IERR )
C
IF( TOLL.LE.ZERO )
$ TOLL = MNOBR*MNOBR*EPS
IF ( RCOND1.GT.MAX( TOLL, THRESH ) ) THEN
C
C U_f is considered full rank and no pivoting is used.
C
CALL DLASET( 'Full', MNOBR, LLMNOB, ZERO, ZERO, R(1,NR2),
$ LDR )
ELSE
C
C Save information about q in the (2,1) block of R.
C Use QR factorization with column pivoting, r P = Q R.
C Information on Q is stored in the strict lower triangle
C of R_11 and in DWORK(ITAU2).
C
DO 20 I = 1, MNOBR - 1
CALL DCOPY( MNOBR, R(I+1,I), -1, R(NR2,I), -1 )
CALL DCOPY( MNOBR-I, DUM, 0, R(I+1,I), 1 )
IWORK(I) = 0
20 CONTINUE
C
IWORK(MNOBR) = 0
C
C Workspace: need 5*M*NOBR.
C
ITAU2 = JWORK
JWORK = ITAU2 + MNOBR
SVLMAX = ZERO
CALL MB03OD( 'QR', MNOBR, MNOBR, R, LDR, IWORK, TOLL,
$ SVLMAX, DWORK(ITAU2), RANK, SVAL,
$ DWORK(JWORK), IERR )
C
C Workspace: need 2*M*NOBR + (M+2*L)*NOBR;
C prefer 2*M*NOBR + (M+2*L)*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', MNOBR, LLMNOB, MNOBR,
$ R, LDR, DWORK(ITAU2), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( RANK.LT.MNOBR ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 4
END IF
C
C Determine residuals r_1 and r_2: premultiply by Q and
C then by q.
C Workspace: need 2*M*NOBR + (M+2*L)*NOBR);
C prefer 2*M*NOBR + (M+2*L)*NOBR*NB.
C
CALL DLASET( 'Full', RANK, LLMNOB, ZERO, ZERO, R(1,NR2),
$ LDR )
CALL DORMQR( 'Left', 'NoTranspose', MNOBR, LLMNOB, MNOBR,
$ R, LDR, DWORK(ITAU2), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU2
C
C Restore the transformation q.
C
DO 30 I = 1, MNOBR - 1
CALL DCOPY( MNOBR, R(NR2,I), 1, R(I+1,I), 1 )
30 CONTINUE
C
END IF
C
C Premultiply by the transformation q (apply transformations
C in backward order).
C Workspace: need M*NOBR + (M+2*L)*NOBR;
C prefer larger.
C
CALL MB04IY( 'Left', 'NoTranspose', MMNOBR, LLMNOB, MNOBR,
$ MNOBR-1, R, LDR, DWORK(ITAU), R(1,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
ELSE
C
C Save Y_f (transposed) in the last block-row of R.
C
CALL MA02AD( 'Full', LMMNOB, LNOBR, R(1,NR4), LDR, R(NR4,1),
$ LDR )
RCOND1 = ONE
END IF
C
C Triangularize the matrix r_1 for determining the oblique
C projection P in least squares problem in (1). Exploit the
C fact that the third block-row of r_1 has the structure
C [ 0 T ], where T is an upper triangular matrix. Then apply
C the corresponding transformations Q' to the matrix r_2.
C Workspace: need 2*M*NOBR;
C prefer M*NOBR + M*NOBR*NB.
C
CALL DGEQRF( MMNOBR, MNOBR, R(1,NR2), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Workspace: need M*NOBR + 2*L*NOBR;
C prefer M*NOBR + 2*L*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', MMNOBR, LLNOBR, MNOBR,
$ R(1,NR2), LDR, DWORK(ITAU), R(1,NR3), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
NRSAVE = NR2
C
ITAU2 = JWORK
JWORK = ITAU2 + LNOBR
CALL MB04ID( LMNOBR, LNOBR, LNOBR-1, LNOBR, R(NR2,NR3), LDR,
$ R(NR2,NR4), LDR, DWORK(ITAU2), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Check the condition of the triangular matrix of order (m+l)*s
C just determined, and decide to use pivoting or not.
C Workspace: need 4*(M+L)*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', LMNOBR, R(1,NR2),
$ LDR, RCOND2, DWORK(JWORK), IWORK, IERR )
C
IF( TOL.LE.ZERO )
$ TOLL = LMNOBR*LMNOBR*EPS
IF ( RCOND2.LE.MAX( TOLL, THRESH ) ) THEN
IF ( M.GT.0 ) THEN
C
C Save information about Q in R_11 (in the strict lower
C triangle), R_21 and R_31 (transposed information).
C
CALL DLACPY( 'Lower', MMNOBR-1, MNOBR, R(2,NR2), LDR,
$ R(2,1), LDR )
NRSAVE = 1
C
DO 40 I = NR2, LMNOBR
CALL DCOPY( MNOBR, R(I+1,MNOBR+I), 1, R(MNOBR+I,1),
$ LDR )
40 CONTINUE
C
END IF
C
CALL DLASET( 'Lower', LMNOBR-1, LMNOBR-1, ZERO, ZERO,
$ R(2,NR2), LDR )
C
C Use QR factorization with column pivoting.
C Workspace: need 5*(M+L)*NOBR.
C
DO 50 I = 1, LMNOBR
IWORK(I) = 0
50 CONTINUE
C
ITAU3 = JWORK
JWORK = ITAU3 + LMNOBR
SVLMAX = ZERO
CALL MB03OD( 'QR', LMNOBR, LMNOBR, R(1,NR2), LDR, IWORK,
$ TOLL, SVLMAX, DWORK(ITAU3), RANK1, SVAL,
$ DWORK(JWORK), IERR )
C
C Workspace: need 2*(M+L)*NOBR + L*NOBR;
C prefer 2*(M+L)*NOBR + L*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', LMNOBR, LNOBR, LMNOBR,
$ R(1,NR2), LDR, DWORK(ITAU3), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( RANK1.LT.LMNOBR ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 5
END IF
C
C Apply the orthogonal transformations, in backward order, to
C [r_2(1:rank(r_1),:)' 0]', to obtain P'.
C Workspace: need 2*(M+L)*NOBR + L*NOBR;
C prefer 2*(M+L)*NOBR + L*NOBR*NB.
C
CALL DLASET( 'Full', LMNOBR-RANK1, LNOBR, ZERO, ZERO,
$ R(RANK1+1,NR4), LDR )
CALL DORMQR( 'Left', 'NoTranspose', LMNOBR, LNOBR, LMNOBR,
$ R(1,NR2), LDR, DWORK(ITAU3), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU3
C
IF ( M.GT.0 ) THEN
C
C Restore the saved transpose matrix from R_31.
C
DO 60 I = NR2, LMNOBR
CALL DCOPY( MNOBR, R(MNOBR+I,1), LDR, R(I+1,MNOBR+I),
$ 1 )
60 CONTINUE
C
END IF
C
END IF
C
C Workspace: need M*NOBR + L*NOBR;
C prefer larger.
C
CALL MB04IY( 'Left', 'NoTranspose', LMNOBR, LNOBR, LNOBR,
$ LNOBR-1, R(NR2,NR3), LDR, DWORK(ITAU2),
$ R(NR2,NR4), LDR, DWORK(JWORK), LDWORK-JWORK+1,
$ IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need M*NOBR + L*NOBR;
C prefer M*NOBR + L*NOBR*NB.
C
JWORK = ITAU2
CALL DORMQR( 'Left', 'NoTranspose', MMNOBR, LNOBR, MNOBR,
$ R(1,NRSAVE), LDR, DWORK(ITAU), R(1,NR4), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Now, the matrix P' is available in R_14 : R_34.
C Triangularize the matrix P'.
C Workspace: need 2*L*NOBR;
C prefer L*NOBR + L*NOBR*NB.
C
JWORK = ITAU + LNOBR
CALL DGEQRF( LMMNOB, LNOBR, R(1,NR4), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Copy the triangular factor to its final position, R_22.
C
CALL DLACPY( 'Upper', LNOBR, LNOBR, R(1,NR4), LDR, R(NR2,NR2),
$ LDR )
C
C Restore Y_f.
C
CALL MA02AD( 'Full', LNOBR, LMMNOB, R(NR4,1), LDR, R(1,NR4),
$ LDR )
END IF
C
C Find the singular value decomposition of R_22.
C Workspace: need 5*L*NOBR.
C
CALL MB03UD( 'NoVectors', 'Vectors', LNOBR, R(NR2,NR2), LDR,
$ DUM, 1, SV, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
C Transpose R(m*s+1:(m+L)*s,m*s+1:(m+L)*s) in-situ; its
C columns will then be the singular vectors needed subsequently.
C
DO 70 I = NR2+1, LMNOBR
CALL DSWAP( LMNOBR-I+1, R(I,I-1), 1, R(I-1,I), LDR )
70 CONTINUE
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C numbers, if METH = 'N'.
C
DWORK(1) = MAXWRK
IF ( N4SID ) THEN
DWORK(2) = RCOND1
DWORK(3) = RCOND2
END IF
RETURN
C
C *** Last line of IB01ND ***
END
|