1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
SUBROUTINE AB01OD( STAGES, JOBU, JOBV, N, M, A, LDA, B, LDB, U,
$ LDU, V, LDV, NCONT, INDCON, KSTAIR, TOL, IWORK,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To reduce the matrices A and B using (and optionally accumulating)
C state-space and input-space transformations U and V respectively,
C such that the pair of matrices
C
C Ac = U' * A * U, Bc = U' * B * V
C
C are in upper "staircase" form. Specifically,
C
C [ Acont * ] [ Bcont ]
C Ac = [ ], Bc = [ ],
C [ 0 Auncont ] [ 0 ]
C
C and
C
C [ A11 A12 . . . A1,p-1 A1p ] [ B1 ]
C [ A21 A22 . . . A2,p-1 A2p ] [ 0 ]
C [ 0 A32 . . . A3,p-1 A3p ] [ 0 ]
C Acont = [ . . . . . . . ], Bc = [ . ],
C [ . . . . . . ] [ . ]
C [ . . . . . ] [ . ]
C [ 0 0 . . . Ap,p-1 App ] [ 0 ]
C
C where the blocks B1, A21, ..., Ap,p-1 have full row ranks and
C p is the controllability index of the pair. The size of the
C block Auncont is equal to the dimension of the uncontrollable
C subspace of the pair (A, B). The first stage of the reduction,
C the "forward" stage, accomplishes the reduction to the orthogonal
C canonical form (see SLICOT library routine AB01ND). The blocks
C B1, A21, ..., Ap,p-1 are further reduced in a second, "backward"
C stage to upper triangular form using RQ factorization. Each of
C these stages is optional.
C
C ARGUMENTS
C
C Mode Parameters
C
C STAGES CHARACTER*1
C Specifies the reduction stages to be performed as follows:
C = 'F': Perform the forward stage only;
C = 'B': Perform the backward stage only;
C = 'A': Perform both (all) stages.
C
C JOBU CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix U the state-space transformations as follows:
C = 'N': Do not form U;
C = 'I': U is internally initialized to the unit matrix (if
C STAGES <> 'B'), or updated (if STAGES = 'B'), and
C the orthogonal transformation matrix U is
C returned.
C
C JOBV CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix V the input-space transformations as follows:
C = 'N': Do not form V;
C = 'I': V is initialized to the unit matrix and the
C orthogonal transformation matrix V is returned.
C JOBV is not referenced if STAGES = 'F'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e. the order of the
C matrix A. N >= 0.
C
C M (input) INTEGER
C The actual input dimension. M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state transition matrix A to be transformed.
C If STAGES = 'B', A should be in the orthogonal canonical
C form, as returned by SLICOT library routine AB01ND.
C On exit, the leading N-by-N part of this array contains
C the transformed state transition matrix U' * A * U.
C The leading NCONT-by-NCONT part contains the upper block
C Hessenberg state matrix Acont in Ac, given by U' * A * U,
C of a controllable realization for the original system.
C The elements below the first block-subdiagonal are set to
C zero. If STAGES <> 'F', the subdiagonal blocks of A are
C triangularized by RQ factorization, and the annihilated
C elements are explicitly zeroed.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B to be transformed.
C If STAGES = 'B', B should be in the orthogonal canonical
C form, as returned by SLICOT library routine AB01ND.
C On exit with STAGES = 'F', the leading N-by-M part of
C this array contains the transformed input matrix U' * B,
C with all elements but the first block set to zero.
C On exit with STAGES <> 'F', the leading N-by-M part of
C this array contains the transformed input matrix
C U' * B * V, with all elements but the first block set to
C zero and the first block in upper triangular form.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C If STAGES <> 'B' or JOBU = 'N', then U need not be set
C on entry.
C If STAGES = 'B' and JOBU = 'I', then, on entry, the
C leading N-by-N part of this array must contain the
C transformation matrix U that reduced the pair to the
C orthogonal canonical form.
C On exit, if JOBU = 'I', the leading N-by-N part of this
C array contains the transformation matrix U that performed
C the specified reduction.
C If JOBU = 'N', the array U is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDU = 1 and
C declare this array to be U(1,1) in the calling program).
C
C LDU INTEGER
C The leading dimension of array U.
C If JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
C
C V (output) DOUBLE PRECISION array, dimension (LDV,M)
C If JOBV = 'I', then the leading M-by-M part of this array
C contains the transformation matrix V.
C If STAGES = 'F', or JOBV = 'N', the array V is not
C referenced and can be supplied as a dummy array (i.e. set
C parameter LDV = 1 and declare this array to be V(1,1) in
C the calling program).
C
C LDV INTEGER
C The leading dimension of array V.
C If STAGES <> 'F' and JOBV = 'I', LDV >= MAX(1,M);
C if STAGES = 'F' or JOBV = 'N', LDV >= 1.
C
C NCONT (input/output) INTEGER
C The order of the controllable state-space representation.
C NCONT is input only if STAGES = 'B'.
C
C INDCON (input/output) INTEGER
C The number of stairs in the staircase form (also, the
C controllability index of the controllable part of the
C system representation).
C INDCON is input only if STAGES = 'B'.
C
C KSTAIR (input/output) INTEGER array, dimension (N)
C The leading INDCON elements of this array contain the
C dimensions of the stairs, or, also, the orders of the
C diagonal blocks of Acont.
C KSTAIR is input if STAGES = 'B', and output otherwise.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance,
C defined by TOLDEF = N*N*EPS, is used instead, where EPS
C is the machine precision (see LAPACK Library routine
C DLAMCH).
C TOL is not referenced if STAGES = 'B'.
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C IWORK is not referenced if STAGES = 'B'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If STAGES <> 'B', LDWORK >= MAX(1, N + MAX(N,3*M));
C If STAGES = 'B', LDWORK >= MAX(1, M + MAX(N,M)).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Staircase reduction of the pencil [B|sI - A] is used. Orthogonal
C transformations U and V are constructed such that
C
C
C |B |sI-A * . . . * * |
C | 1| 11 . . . |
C | | A sI-A . . . |
C | | 21 22 . . . |
C | | . . * * |
C [U'BV|sI - U'AU] = |0 | 0 . . |
C | | A sI-A * |
C | | p,p-1 pp |
C | | |
C |0 | 0 0 sI-A |
C | | p+1,p+1|
C
C
C where the i-th diagonal block of U'AU has dimension KSTAIR(i),
C for i = 1,...,p. The value of p is returned in INDCON. The last
C block contains the uncontrollable modes of the (A,B)-pair which
C are also the generalized eigenvalues of the above pencil.
C
C The complete reduction is performed in two stages. The first,
C forward stage accomplishes the reduction to the orthogonal
C canonical form. The second, backward stage consists in further
C reduction to triangular form by applying left and right orthogonal
C transformations.
C
C REFERENCES
C
C [1] Van Dooren, P.
C The generalized eigenvalue problem in linear system theory.
C IEEE Trans. Auto. Contr., AC-26, pp. 111-129, 1981.
C
C [2] Miminis, G. and Paige, C.
C An algorithm for pole assignment of time-invariant multi-input
C linear systems.
C Proc. 21st IEEE CDC, Orlando, Florida, 1, pp. 62-67, 1982.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O((N + M) x N**2) operations and is
C backward stable (see [1]).
C
C FURTHER COMMENTS
C
C If the system matrices A and B are badly scaled, it would be
C useful to scale them with SLICOT routine TB01ID, before calling
C the routine.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C Supersedes Release 2.0 routine AB01CD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C January 14, 1997, February 12, 1998.
C
C KEYWORDS
C
C Controllability, generalized eigenvalue problem, orthogonal
C transformation, staircase form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER*1 JOBU, JOBV, STAGES
INTEGER INFO, INDCON, LDA, LDB, LDU, LDV, LDWORK, M, N,
$ NCONT
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*), KSTAIR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), U(LDU,*), V(LDV,*)
C .. Local Scalars ..
LOGICAL LJOBUI, LJOBVI, LSTAGB, LSTGAB
INTEGER I, I0, IBSTEP, ITAU, J0, JINI, JWORK, MCRT, MM,
$ NCRT, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB01ND, DGERQF, DLACPY, DLASET, DORGRQ, DORMRQ,
$ DSWAP, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LJOBUI = LSAME( JOBU, 'I' )
C
LSTAGB = LSAME( STAGES, 'B' )
LSTGAB = LSAME( STAGES, 'A' ).OR.LSTAGB
C
IF ( LSTGAB ) THEN
LJOBVI = LSAME( JOBV, 'I' )
END IF
C
C Test the input scalar arguments.
C
IF( .NOT.LSTGAB .AND. .NOT.LSAME( STAGES, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.LJOBUI .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( .NOT.LJOBUI .AND. LDU.LT.1 .OR.
$ LJOBUI .AND. LDU.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( .NOT.LSTAGB .AND. LDWORK.LT.MAX( 1, N + MAX( N, 3*M ) )
$ .OR. LSTAGB .AND. LDWORK.LT.MAX( 1, M + MAX( N, M ) ) )
$ THEN
INFO = -20
ELSE IF( LSTGAB ) THEN
IF( .NOT.LJOBVI .AND. .NOT.LSAME( JOBV, 'N' ) ) THEN
INFO = -3
ELSE IF( .NOT.LJOBVI .AND. LDV.LT.1 .OR.
$ LJOBVI .AND. LDV.LT.MAX( 1, M ) ) THEN
INFO = -13
END IF
ELSE IF( .NOT.LSTAGB .AND. (TOL.LT.ZERO .OR. TOL.GT.ONE) ) THEN
C added by S. STEER (see mb03oy)
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB01OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( N, M ).EQ.0 ) THEN
NCONT = 0
INDCON = 0
RETURN
END IF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
ITAU = 1
WRKOPT = 1
C
IF ( .NOT.LSTAGB ) THEN
C
C Perform the forward stage computations of the staircase
C algorithm on B and A: reduce the (A, B) pair to orthogonal
C canonical form.
C
C Workspace: N + MAX(N,3*M).
C
JWORK = N + 1
CALL AB01ND( JOBU, N, M, A, LDA, B, LDB, NCONT, INDCON,
$ KSTAIR, U, LDU, DWORK(ITAU), TOL, IWORK,
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
IF(INFO.LT.0) RETURN
C
WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
END IF
C
C Exit if no further reduction to triangularize B1 and subdiagonal
C blocks of A is required, or if the order of the controllable part
C is 0.
C
IF ( .NOT.LSTGAB ) THEN
RETURN
ELSE IF ( NCONT.EQ.0 .OR. INDCON.EQ.0 ) THEN
IF( LJOBVI )
$ CALL DLASET( 'F', M, M, ZERO, ONE, V, LDV )
RETURN
END IF
C
C Now perform the backward steps except the last one.
C
MCRT = KSTAIR(INDCON)
I0 = NCONT - MCRT + 1
JWORK = M + 1
C
DO 10 IBSTEP = INDCON, 2, -1
NCRT = KSTAIR(IBSTEP-1)
J0 = I0 - NCRT
MM = MIN( NCRT, MCRT )
C
C Compute the RQ factorization of the current subdiagonal block
C of A, Ai,i-1 = R*Q (where i is IBSTEP), of dimension
C MCRT-by-NCRT, starting in position (I0,J0).
C The matrix Q' should postmultiply U, if required.
C Workspace: need M + MCRT;
C prefer M + MCRT*NB.
C
CALL DGERQF( MCRT, NCRT, A(I0,J0), LDA, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Set JINI to the first column number in A where the current
C transformation Q is to be applied, taking the block Hessenberg
C form into account.
C
IF ( IBSTEP.GT.2 ) THEN
JINI = J0 - KSTAIR(IBSTEP-2)
ELSE
JINI = 1
C
C Premultiply the first block row (B1) of B by Q.
C Workspace: need 2*M;
C prefer M + M*NB.
C
CALL DORMRQ( 'Left', 'No transpose', NCRT, M, MM, A(I0,J0),
$ LDA, DWORK(ITAU), B, LDB, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Premultiply the appropriate block row of A by Q.
C Workspace: need M + N;
C prefer M + N*NB.
C
CALL DORMRQ( 'Left', 'No transpose', NCRT, N-JINI+1, MM,
$ A(I0,J0), LDA, DWORK(ITAU), A(J0,JINI), LDA,
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Postmultiply the appropriate block column of A by Q'.
C Workspace: need M + I0-1;
C prefer M + (I0-1)*NB.
C
CALL DORMRQ( 'Right', 'Transpose', I0-1, NCRT, MM, A(I0,J0),
$ LDA, DWORK(ITAU), A(1,J0), LDA, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LJOBUI ) THEN
C
C Update U, postmultiplying it by Q'.
C Workspace: need M + N;
C prefer M + N*NB.
C
CALL DORMRQ( 'Right', 'Transpose', N, NCRT, MM, A(I0,J0),
$ LDA, DWORK(ITAU), U(1,J0), LDU, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Zero the subdiagonal elements of the current subdiagonal block
C of A.
C
CALL DLASET( 'F', MCRT, NCRT-MCRT, ZERO, ZERO, A(I0,J0), LDA )
IF ( I0.LT.N )
$ CALL DLASET( 'L', MCRT-1, MCRT-1, ZERO, ZERO,
$ A(I0+1,I0-MCRT), LDA )
C
MCRT = NCRT
I0 = J0
C
10 CONTINUE
C
C Now perform the last backward step on B, V = Qb'.
C
C Compute the RQ factorization of the first block of B, B1 = R*Qb.
C Workspace: need M + MCRT;
C prefer M + MCRT*NB.
C
CALL DGERQF( MCRT, M, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( LJOBVI ) THEN
C
C Accumulate the input-space transformations V.
C Workspace: need 2*M; prefer M + M*NB.
C
CALL DLACPY( 'F', MCRT, M-MCRT, B, LDB, V(M-MCRT+1,1), LDV )
IF ( MCRT.GT.1 )
$ CALL DLACPY( 'L', MCRT-1, MCRT-1, B(2,M-MCRT+1), LDB,
$ V(M-MCRT+2,M-MCRT+1), LDV )
CALL DORGRQ( M, M, MCRT, V, LDV, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
C
DO 20 I = 2, M
CALL DSWAP( I-1, V(I, 1), LDV, V(1,I), 1 )
20 CONTINUE
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
END IF
C
C Zero the subdiagonal elements of the submatrix B1.
C
CALL DLASET( 'F', MCRT, M-MCRT, ZERO, ZERO, B, LDB )
IF ( MCRT.GT.1 )
$ CALL DLASET( 'L', MCRT-1, MCRT-1, ZERO, ZERO, B(2,M-MCRT+1),
$ LDB )
C
C Set optimal workspace dimension.
C
DWORK(1) = WRKOPT
RETURN
C *** Last line of AB01OD ***
END
|