1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
SUBROUTINE AB01ND( JOBZ, N, M, A, LDA, B, LDB, NCONT, INDCON,
$ NBLK, Z, LDZ, TAU, TOL, IWORK, DWORK, LDWORK,
$ INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To find a controllable realization for the linear time-invariant
C multi-input system
C
C dX/dt = A * X + B * U,
C
C where A and B are N-by-N and N-by-M matrices, respectively,
C which are reduced by this routine to orthogonal canonical form
C using (and optionally accumulating) orthogonal similarity
C transformations. Specifically, the pair (A, B) is reduced to
C the pair (Ac, Bc), Ac = Z' * A * Z, Bc = Z' * B, given by
C
C [ Acont * ] [ Bcont ]
C Ac = [ ], Bc = [ ],
C [ 0 Auncont ] [ 0 ]
C
C and
C
C [ A11 A12 . . . A1,p-1 A1p ] [ B1 ]
C [ A21 A22 . . . A2,p-1 A2p ] [ 0 ]
C [ 0 A32 . . . A3,p-1 A3p ] [ 0 ]
C Acont = [ . . . . . . . ], Bc = [ . ],
C [ . . . . . . ] [ . ]
C [ . . . . . ] [ . ]
C [ 0 0 . . . Ap,p-1 App ] [ 0 ]
C
C where the blocks B1, A21, ..., Ap,p-1 have full row ranks and
C p is the controllability index of the pair. The size of the
C block Auncont is equal to the dimension of the uncontrollable
C subspace of the pair (A, B).
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBZ CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix Z the orthogonal similarity transformations for
C reducing the system, as follows:
C = 'N': Do not form Z and do not store the orthogonal
C transformations;
C = 'F': Do not form Z, but store the orthogonal
C transformations in the factored form;
C = 'I': Z is initialized to the unit matrix and the
C orthogonal transformation matrix Z is returned.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e. the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs, or of columns of B. M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, the leading NCONT-by-NCONT part contains the
C upper block Hessenberg state dynamics matrix Acont in Ac,
C given by Z' * A * Z, of a controllable realization for
C the original system. The elements below the first block-
C subdiagonal are set to zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B.
C On exit, the leading NCONT-by-M part of this array
C contains the transformed input matrix Bcont in Bc, given
C by Z' * B, with all elements but the first block set to
C zero.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C NCONT (output) INTEGER
C The order of the controllable state-space representation.
C
C INDCON (output) INTEGER
C The controllability index of the controllable part of the
C system representation.
C
C NBLK (output) INTEGER array, dimension (N)
C The leading INDCON elements of this array contain the
C the orders of the diagonal blocks of Acont.
C
C Z (output) DOUBLE PRECISION array, dimension (LDZ,N)
C If JOBZ = 'I', then the leading N-by-N part of this
C array contains the matrix of accumulated orthogonal
C similarity transformations which reduces the given system
C to orthogonal canonical form.
C If JOBZ = 'F', the elements below the diagonal, with the
C array TAU, represent the orthogonal transformation matrix
C as a product of elementary reflectors. The transformation
C matrix can then be obtained by calling the LAPACK Library
C routine DORGQR.
C If JOBZ = 'N', the array Z is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDZ = 1 and
C declare this array to be Z(1,1) in the calling program).
C
C LDZ INTEGER
C The leading dimension of array Z. If JOBZ = 'I' or
C JOBZ = 'F', LDZ >= MAX(1,N); if JOBZ = 'N', LDZ >= 1.
C
C TAU (output) DOUBLE PRECISION array, dimension (N)
C The elements of TAU contain the scalar factors of the
C elementary reflectors used in the reduction of B and A.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance,
C defined by TOLDEF = N*N*EPS, is used instead, where EPS
C is the machine precision (see LAPACK Library routine
C DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N, 3*M).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Matrix B is first QR-decomposed and the appropriate orthogonal
C similarity transformation applied to the matrix A. Leaving the
C first rank(B) states unchanged, the remaining lower left block
C of A is then QR-decomposed and the new orthogonal matrix, Q1,
C is also applied to the right of A to complete the similarity
C transformation. By continuing in this manner, a completely
C controllable state-space pair (Acont, Bcont) is found for the
C given (A, B), where Acont is upper block Hessenberg with each
C subdiagonal block of full row rank, and Bcont is zero apart from
C its (independent) first rank(B) rows.
C NOTE that the system controllability indices are easily
C calculated from the dimensions of the blocks of Acont.
C
C REFERENCES
C
C [1] Konstantinov, M.M., Petkov, P.Hr. and Christov, N.D.
C Orthogonal Invariants and Canonical Forms for Linear
C Controllable Systems.
C Proc. 8th IFAC World Congress, Kyoto, 1, pp. 49-54, 1981.
C
C [2] Paige, C.C.
C Properties of numerical algorithms related to computing
C controllablity.
C IEEE Trans. Auto. Contr., AC-26, pp. 130-138, 1981.
C
C [3] Petkov, P.Hr., Konstantinov, M.M., Gu, D.W. and
C Postlethwaite, I.
C Optimal Pole Assignment Design of Linear Multi-Input Systems.
C Leicester University, Report 99-11, May 1996.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C If the system matrices A and B are badly scaled, it would be
C useful to scale them with SLICOT routine TB01ID, before calling
C the routine.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C Supersedes Release 2.0 routine AB01BD by P.Hr. Petkov.
C
C REVISIONS
C
C January 14, 1997, June 4, 1997, February 13, 1998.
C
C KEYWORDS
C
C Controllability, minimal realization, orthogonal canonical form,
C orthogonal transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER*1 JOBZ
INTEGER INDCON, INFO, LDA, LDB, LDWORK, LDZ, M, N, NCONT
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), TAU(*), Z(LDZ,*)
INTEGER IWORK(*), NBLK(*)
C .. Local Scalars ..
LOGICAL LJOBF, LJOBI, LJOBZ
INTEGER IQR, ITAU, J, MCRT, NBL, NCRT, NI, NJ, RANK,
$ WRKOPT
DOUBLE PRECISION ANORM, BNORM, FNRM, TOLDEF
C .. Local Arrays ..
DOUBLE PRECISION SVAL(3)
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE, DLAPY2
EXTERNAL DLAMCH, DLANGE, DLAPY2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLACPY, DLAPMT, DLASET, DORGQR, DORMQR,
$ MB01PD, MB03OY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
INFO = 0
LJOBF = LSAME( JOBZ, 'F' )
LJOBI = LSAME( JOBZ, 'I' )
LJOBZ = LJOBF.OR.LJOBI
C
C Test the input scalar arguments.
C
IF( .NOT.LJOBZ .AND. .NOT.LSAME( JOBZ, 'N' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( .NOT.LJOBZ .AND. LDZ.LT.1 .OR.
$ LJOBZ .AND. LDZ.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF(TOL.LT.ZERO .OR. TOL.GT.ONE ) THEN
C added by S. STEER (see mb03oy)
INFO = -14
ELSE IF( LDWORK.LT.MAX( 1, N, 3*M ) ) THEN
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB01ND', -INFO )
RETURN
END IF
C
NCONT = 0
INDCON = 0
C
C Quick return if possible.
C
IF ( MIN( N, M ).EQ.0 )
$ RETURN
C
C Calculate the absolute norms of A and B (used for scaling).
C
ANORM = DLANGE( 'M', N, N, A, LDA, DWORK )
BNORM = DLANGE( 'M', N, M, B, LDB, DWORK )
C
C Return if matrix B is zero.
C
IF( BNORM.EQ.ZERO ) THEN
IF ( LJOBI ) THEN
CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
ELSE IF ( LJOBF ) THEN
CALL DLASET( 'Full', N, N, ZERO, ZERO, Z, LDZ )
CALL DLASET( 'Full', N, 1, ZERO, ZERO, TAU, N )
END IF
RETURN
END IF
C
C Scale (if needed) the matrices A and B.
C
CALL MB01PD( 'Scale', 'G', N, N, 0, 0, ANORM, 0, NBLK, A, LDA,
$ INFO )
CALL MB01PD( 'Scale', 'G', N, M, 0, 0, BNORM, 0, NBLK, B, LDB,
$ INFO )
C
C Compute the Frobenius norm of [ B A ] (used for rank estimation).
C
FNRM = DLAPY2( DLANGE( 'F', N, M, B, LDB, DWORK ),
$ DLANGE( 'F', N, N, A, LDA, DWORK ) )
C
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO ) THEN
C
C Use the default tolerance in controllability determination.
C
TOLDEF = DBLE( N*N )*DLAMCH( 'EPSILON' )
END IF
C
WRKOPT = 1
NI = 0
ITAU = 1
NCRT = N
MCRT = M
IQR = 1
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
10 CONTINUE
C
C Rank-revealing QR decomposition with column pivoting.
C The calculation is performed in NCRT rows of B starting from
C the row IQR (initialized to 1 and then set to rank(B)+1).
C Workspace: 3*MCRT.
C
CALL MB03OY( NCRT, MCRT, B(IQR,1), LDB, TOLDEF, FNRM, RANK,
$ SVAL, IWORK, TAU(ITAU), DWORK, INFO )
C
IF ( RANK.NE.0 ) THEN
NJ = NI
NI = NCONT
NCONT = NCONT + RANK
INDCON = INDCON + 1
NBLK(INDCON) = RANK
C
C Premultiply and postmultiply the appropriate block row
C and block column of A by Q' and Q, respectively.
C Workspace: need NCRT;
C prefer NCRT*NB.
C
CALL DORMQR( 'Left', 'Transpose', NCRT, NCRT, RANK,
$ B(IQR,1), LDB, TAU(ITAU), A(NI+1,NI+1), LDA,
$ DWORK, LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C Workspace: need N;
C prefer N*NB.
C
CALL DORMQR( 'Right', 'No transpose', N, NCRT, RANK,
$ B(IQR,1), LDB, TAU(ITAU), A(1,NI+1), LDA,
$ DWORK, LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C If required, save transformations.
C
IF ( LJOBZ.AND.NCRT.GT.1 ) THEN
CALL DLACPY( 'L', NCRT-1, MIN( RANK, NCRT-1 ),
$ B(IQR+1,1), LDB, Z(NI+2,ITAU), LDZ )
END IF
C
C Zero the subdiagonal elements of the current matrix.
C
IF ( RANK.GT.1 )
$ CALL DLASET( 'L', RANK-1, RANK-1, ZERO, ZERO, B(IQR+1,1),
$ LDB )
C
C Backward permutation of the columns of B or A.
C
IF ( INDCON.EQ.1 ) THEN
CALL DLAPMT( .FALSE., RANK, M, B(IQR,1), LDB, IWORK )
IQR = RANK + 1
ELSE
DO 20 J = 1, MCRT
CALL DCOPY( RANK, B(IQR,J), 1, A(NI+1,NJ+IWORK(J)),
$ 1 )
20 CONTINUE
END IF
C
ITAU = ITAU + RANK
IF ( RANK.NE.NCRT ) THEN
MCRT = RANK
NCRT = NCRT - RANK
CALL DLACPY( 'G', NCRT, MCRT, A(NCONT+1,NI+1), LDA,
$ B(IQR,1), LDB )
CALL DLASET( 'G', NCRT, MCRT, ZERO, ZERO,
$ A(NCONT+1,NI+1), LDA )
GO TO 10
END IF
END IF
C
C If required, accumulate transformations.
C Workspace: need N; prefer N*NB.
C
IF ( LJOBI ) THEN
CALL DORGQR( N, N, MAX( 1, ITAU-1 ), Z, LDZ, TAU, DWORK,
$ LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
END IF
C
C Annihilate the trailing blocks of B.
C
CALL DLASET( 'G', N-IQR+1, M, ZERO, ZERO, B(IQR,1), LDB )
C
C Annihilate the trailing elements of TAU, if JOBZ = 'F'.
C
IF ( LJOBF ) THEN
DO 30 J = ITAU, N
TAU(J) = ZERO
30 CONTINUE
END IF
C
C Undo scaling of A and B.
C
IF ( INDCON.LT.N ) THEN
NBL = INDCON + 1
NBLK(NBL) = N - NCONT
ELSE
NBL = 0
END IF
CALL MB01PD( 'Undo', 'H', N, N, 0, 0, ANORM, NBL, NBLK, A,
$ LDA, INFO )
CALL MB01PD( 'Undo', 'G', NBLK(1), M, 0, 0, BNORM, 0, NBLK, B,
$ LDB, INFO )
C
C Set optimal workspace dimension.
C
DWORK(1) = WRKOPT
RETURN
C *** Last line of AB01ND ***
END
|