1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
|
subroutine sszer(n,m,p,a,na,b,c,nc,d,eps,zeror,zeroi,nu,irank,af,
& naf,bf,mplusn,wrka,wrk1,nwrk1,wrk2,nwrk2,ierr)
C
C! calling sequence
C
C subroutine sszer(n,m,p,a,na,b,c,nc,d,zeror,zeroi,nu,irank,
C 1 af,naf,bf,mplusn,wrka,wrk1,nwrk1,wrk2,nwrk2,ierr)
C
C integer n,m,p,na,nc,nu,irank,nabf,mplusn,nwrk1,nwrk2,ierr
C
C double precision a(na,n),b(na,m),c(nc,n),d(nc,m),wrka(na,n)
C double precision af(naf,mplusn),bf(naf,mplusn)
C double precision wrk1(nwrk1),wrk2(nwrk2)
C double precision zeror(n),zeroi(n)
C
C arguments in
C
C n integer
C -the number of state variables in the system
C
C m integer
C -the number of inputs to the system
C
C p integer
C -the number of outputs from the system
C
C a double precision (n,n)
C -the state dynamics matrix of the system
C
C na integer
C -the declared first dimension of matrices a and b
C
C b double precision (n,m)
C -the input/state matrix of the system
C
C c double precision (p,n)
C -the state/output matrix of the system
C
C nc integer
C -the declared first dimension of matrices c and d
C
C d double precision (p,m)
C -the input/output matrix of the system
C
C naf integer
C -the declared first dimension of matrices af and bf
C naf must be at least n + p
C
C mplusn integer
C -the second dimension of af and bf. mplusn must be
C at least m + n .
C
C nwrk1 integer
C -the length of work vector wrk1.
C nwrk1 must be at least max(m,p)
C
C nwrk2 integer
C -the length of work vector wrk2.
C nwrk2 must be at least max(n,m,p)+1
C
C arguments out
C
C nu integer
C -the number of (finite) invariant zeros
C
C irank integer
C -the normal rank of the transfer function
C
C zeror double precision (n)
C zeroi double precision (n)
C -the real and imaginary parts of the zeros
C
C af double precision ( n+p , m+n )
C bf double precision ( n+p , m+n )
C -the coefficient matrices of the reduced pencil
C
C ierr integer
C -error indicator
C
C ierr = 0 successful return
C
C ierr = 1 incorrect dimensions of matrices
C
C ierr = 2 attempt to divide by zero
C
C ierr = i > 2 ierr value i-2 from qitz (eispack)
C
C!working space
C
C wrka double precision (na,n)
C
C wrk1 double precision (nwrk1)
C
C wrk2 double precision (nwrk2)
C
C!purpose
C
C to compute the invariant zeros of a linear multivariable
C system given in state space form.
C
C!method
C
C this routine extracts from the system matrix of a state-space
C system a,b,c,d a regular pencil lambda * bf - af
C which has the invariant zeros of the system as generalized
C eigenvalues.
C
C!reference
C
C emami-naeini, a. and van dooren, p.
C 'computation of zeros of linear multivariable systems'
C report na-80-03, computer science department, stanford univ.
C
C!originator
C
C a.emami-naeini, computer science department,
C stanford university.
C Copyrigth SLICE
C
integer n,m,p,na,nc,nu,irank,naf,mplusn,nwrk1,nwrk2,ierr
C
double precision a(na,n),b(na,m),c(nc,n),d(nc,m)
double precision wrka(na,n),zeror(n),zeroi(n)
double precision af(naf,mplusn),bf(naf,mplusn),wrk1(nwrk1),
& wrk2(nwrk2)
double precision eps,sum,heps,xxx(1,1)
C
C local variables:
C
logical zero,matq,matz
C
integer mm,nn,pp,mu,iro,isigma,numu,mnu,numu1,mnu1,i,j,j1
integer mj,ni,nu1
C
double precision s
ierr = 1
if (na .lt. n) return
if (nc .lt. p) return
if (naf .lt. n+p) return
if (nwrk1 .lt. m) return
if (nwrk1 .lt. p) return
if (nwrk2 .lt. n) return
if (nwrk2 .lt. m) return
if (nwrk2 .lt. p) return
if (mplusn .lt. m+n) return
ierr = 0
C construct the compound matrix (b a) of dimension
C (d c)
C (n + p) * (m + n)
C
sum = 0.0d+0
do 30 i = 1,n
do 10 j = 1,m
bf(i,j) = b(i,j)
sum = sum + (b(i,j)*b(i,j))
10 continue
do 30 j = 1,n
mj = m + j
bf(i,mj) = a(i,j)
sum = sum + (a(i,j)*a(i,j))
30 continue
C
do 60 i = 1,p
ni = n + i
do 40 j = 1,m
bf(ni,j) = d(i,j)
sum = sum + (d(i,j)*d(i,j))
40 continue
do 60 j = 1,n
mj = m + j
bf(ni,mj) = c(i,j)
sum = sum + (c(i,j)*c(i,j))
60 continue
C
heps = 10.0*eps * sqrt(sum)
C
C reduce this system to one with the same invariant zeros and with
C d full row rank mu (the normal rank of the original system)
C
iro = p
isigma = 0
C
call preduc(bf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,wrk1,nwrk1,
& wrk2,nwrk2)
C
irank = mu
if (nu .eq. 0) return
C
C pertranspose the system
C
numu = nu + mu
mnu = m + nu
numu1 = numu + 1
mnu1 = mnu + 1
do 70 i = 1,numu
ni = numu1 - i
do 70 j = 1,mnu
mj = mnu1 - j
af(mj,ni) = bf(i,j)
70 continue
C
mm = m
nn = n
pp = p
if (mu .eq. mm) goto 80
pp = mm
nn = nu
mm = mu
C
C reduce the system to one with the same invariant zeros and with
C d square and of full rank
C
iro = pp - mm
isigma = mm
C
call preduc(af,naf,mplusn,mm,nn,pp,heps,iro,isigma,mu,nu,wrk1,
& nwrk1,wrk2,nwrk2)
C
if (nu .eq. 0) return
mnu = mm + nu
80 continue
do 100 i = 1,nu
ni = mm + i
do 90 j = 1,mnu
bf(i,j) = 0.0d+0
90 continue
bf(i,ni) = 1.0d+0
100 continue
C
if (irank .eq. 0) return
nu1 = nu + 1
numu = nu + mu
j1 = mm
do 120 i = 1,mm
j1 = j1 - 1
do 110 j = 1,nu1
mj = j1 + j
wrk2(j) = af(numu,mj)
110 continue
C
call house(wrk2,nu1,nu1,heps,zero,s)
call tr2(af,naf,mplusn,wrk2,s,1,numu,j1,nu1)
call tr2(bf,naf,mplusn,wrk2,s,1,nu,j1,nu1)
C
numu = numu - 1
120 continue
matz = .false.
matq = .false.
Cc
call qhesz(naf,nu,af,bf,matq,xxx,matz,wrka)
call qitz(naf,nu,af,bf,eps,matq,xxx,matz,wrka,ierr)
if (ierr .ne. 0) goto 150
Cc
call qvalz(naf,nu,af,bf,eps,zeror,zeroi,wrk2,matq,xxx,matz,wrka)
Cc
C do 130 i = 1,nu
C if (wrk2(i) .eq. 0.0d+0) go to 140
C zeror(i) = zeror(i)/wrk2(i)
C zeroi(i) = zeroi(i)/wrk2(i)
C 130 continue
Cc
Cc successful completion
Cc
ierr = 0
return
Cc
Cc attempt to divide by zero
Cc
C 140 ierr = 2
C return
Cc
Cc failure in subroutine qzit
Cc
150 ierr = ierr + 2
return
end
subroutine preduc(abf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,
1 wrk1,nwrk1,wrk2,nwrk2)
c%calling sequence
c subroutine preduc(abf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,
c 1 wrk1,nwrk1,wrk2,nwrk2)
c integer naf,mplusn,m,n,p,iro,isigma,mu,nu,nwrk1,nwrk2
c double precision abf(naf,mplusn),wrk1(nwrk1),wrk2(nwrk2)
c
c%purpose
c
c this routine is only to be called from slice routine sszer
c%
integer naf,mplusn,m,n,p,iro,isigma,mu,nu,nwrk1,nwrk2
c
double precision abf(naf,mplusn),wrk1(nwrk1),wrk2(nwrk2)
c
c local variables:
c
integer i,j,i1,m1,n1,i2,mm1,mn1,irj,itau,iro1,icol
integer ibar,numu,irow
c
logical zero
c
double precision s,temp
c
double precision sum,heps
c
c
mu = p
nu = n
10 if (mu .eq. 0) return
iro1 = iro
mnu = m + nu
numu = nu + mu
if (m .eq. 0) go to 120
iro1 = iro1 + 1
irow = nu
if (isigma .le. 1) go to 40
c
c compress rows of d: first exploit triangular shape
c
m1 = isigma - 1
do 30 icol = 1,m1
do 20 j = 1,iro1
irj = irow + j
wrk2(j) = abf(irj,icol)
20 continue
c
call house(wrk2,iro1,1,heps,zero,s)
c
call tr1(abf,naf,mplusn,wrk2,s,irow,iro1,icol,mnu)
c
irow = irow + 1
30 continue
c
c continue with householder transformation with pivoting
c
40 if (isigma .ne. 0) go to 45
isigma = 1
iro1 = iro1 - 1
45 if (isigma .eq. m) go to 60
do 55 icol = isigma,m
sum = 0.0d+0
do 50 j = 1,iro1
irj = irow + j
sum = sum + (abf(irj,icol) * abf(irj,icol) )
50 continue
wrk1(icol) = sum
55 continue
c
60 continue
do 100 icol = isigma,m
c
c pivot if necessary
c
if (icol .eq. m) go to 80
c
call pivot(wrk1,temp,ibar,icol,m)
c
if (ibar .eq. icol) go to 80
wrk1(ibar) = wrk1(icol)
wrk1(icol) = temp
do 70 i = 1,numu
temp = abf(i,icol)
abf(i,icol) = abf(i,ibar)
70 abf(i,ibar) = temp
c
c perform householder transformation
c
80 continue
do 90 i = 1,iro1
irj = irow + i
90 wrk2(i) = abf(irj,icol)
c
call house(wrk2,iro1,1,heps,zero,s)
c
if (zero) go to 120
if (iro1 .eq. 1) return
c
call tr1(abf,naf,mplusn,wrk2,s,irow,iro1,icol,mnu)
c
irow = irow + 1
iro1 = iro1 - 1
do 100 j = icol,m
100 wrk1(j) = wrk1(j) - (abf(irow,j) * abf(irow,j) )
c
120 itau = iro1
isigma = mu - itau
c
c compress the columns of c
c
i1 = nu + isigma
mm1 = m + 1
n1 = nu
if (itau .eq. 1) go to 140
do 135 i = 1,itau
irj = i1 + i
sum = 0.0d+0
do 130 j = mm1,mnu
130 sum = sum + (abf(irj,j) * abf(irj,j) )
135 wrk1(i) = sum
c
140 continue
do 200 iro1 = 1,itau
iro = iro1 - 1
i = itau - iro
i2 = i + i1
c
c pivot if necessary
c
if (i .eq. 1) go to 160
c
call pivot(wrk1,temp,ibar,1,i)
c
if (ibar .eq. i) go to 160
wrk1(ibar) = wrk1(i)
wrk1(i) = temp
irj = ibar + i1
do 150 j = mm1,mnu
temp = abf(i2,j)
abf(i2,j) = abf(irj,j)
150 abf(irj,j) = temp
c
c perform householder transformation
c
160 do 170 j = 1,n1
irj = m + j
170 wrk2(j) = abf(i2,irj)
c
call house(wrk2,n1,n1,heps,zero,s)
c
if (zero) go to 210
if (n1 .eq. 1) go to 220
c
call tr2(abf,naf,mplusn,wrk2,s,1,i2,m,n1)
c
mn1 = m + n1
c
call tr1(abf,naf,mplusn,wrk2,s,0,n1,1,mn1)
c
do 190 j = 1,i
irj = i1 + j
190 wrk1(j) = wrk1(j) - (abf(irj,mn1) * abf(irj,mn1) )
mnu = mnu - 1
200 n1 = n1 - 1
c
iro = itau
210 nu = nu - iro
mu = isigma + iro
if (iro .eq. 0) return
go to 10
c
220 mu = isigma
nu = 0
c
return
end
subroutine house(wrk2,k,j,heps,zero,s)
c
c warning - this routine is only to be called from slice routine
c sszer
c
c% purpose
c this routine constructs a householder transformation h = i-s.uu
c that 'mirrors' a vector wrk2(1,...,k) to the j-th unit vector.
c if norm(wrk2) < heps, zero is put equal to .true.
c upon return, u is stored in wrk2
c
c%
integer k,j
c
double precision wrk2(k),heps,s
c
logical zero
c
c local variables:
c
integer i
c
double precision alfa,dum1
c
double precision sum
c
c
zero = .true.
sum = 0.0d+0
do 10 i = 1,k
10 sum = sum + (wrk2(i) * wrk2(i) )
c
alfa = sqrt(sum)
if (alfa .le. heps) return
c
zero = .false.
dum1 = wrk2(j)
if (dum1 .gt. 0.0d+0) alfa = -alfa
wrk2(j) = dum1 - alfa
s = 1.0d+0 / (sum - (alfa * dum1) )
c
return
end
subroutine tr1(a,na,n,u,s,i1,i2,j1,j2)
c% calling sequence
c
c subroutine tr1(a,na,n,u,s,i1,i2,j1,j2)
c
c%purpose
c
c this subroutine performs the householder transformation
c h = i - s.uu
c on the rows i1 + 1 to i1 + i2 of a, this from columns j1 to j2.
c% comments
c
c warning - this routine is only to be called from slice routine
c sszer
c
c%
integer na,n,i1,i2,j1,j2
c
double precision a(na,n),u(i2),s
c
c local variables:
c
integer i,j,irj
c
double precision y
c
double precision sum
c
c
do 20 j = j1,j2
sum = 0.0d+0
do 10 i = 1,i2
irj = i1 + i
10 sum = sum + (u(i) * a(irj,j) )
c
y = sum * s
c
do 20 i = 1,i2
irj = i1 + i
20 a(irj,j) = a(irj,j) - (u(i) * y)
c
return
end
subroutine tr2(a,na,n,u,s,i1,i2,j1,j2)
c% calling sequence
c
c subroutine tr2(a,na,n,u,s,i1,i2,j1,j2)
c%purpose
c
c this routine performs the householder transformation h = i-s.uu
c on the columns j1 + 1 to j1 + j2 of a, this from rows i1 to i2.
c
c% comments
c
c warning - this routine is only to be called from slice routine
c sszer
c%
integer na,n,i1,i2,j1,j2
c
double precision a(na,n),u(j2),s
c
c local variables:
c
integer i,j,irj
c
double precision y
c
double precision sum
c
c
do 20 i = i1,i2
sum = 0.0d+0
do 10 j = 1,j2
irj = j1 + j
10 sum = sum + (u(j) * a(i,irj) )
c
y = sum * s
c
do 20 j = 1,j2
irj = j1 + j
20 a(i,irj) = a(i,irj) - (u(j) * y)
c
return
end
subroutine pivot(vec,vmax,ibar,i1,i2)
c% calling sequence
c subroutine pivot(vec,vmax,ibar,i1,i2)
c integer ibar,i1,i2
c double precision vec(i2),vmax
c
c% purpose
c
c this subroutine computes the maximal norm element (vthe max)
c of the vector vec(i1,...,i2), and its location ibar
c
c this routine is only to be called from slice routine sszer
c
c%
integer ibar,i1,i2
c
double precision vec(i2),vmax
c
c local variables:
c
integer i,i11
c
c
ibar = i1
vmax = vec(i1)
if (i1 .ge. i2) go to 20
i11 = i1 + 1
do 10 i = i11,i2
if (abs(vec(i) ) .lt. vmax) go to 10
vmax = abs (vec(i) )
ibar = i
10 continue
c
20 if (vec(ibar) .lt. 0.0d+0) vmax = -vmax
c
return
end
|