1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
subroutine qitz(nm,n,a,b,eps1,matq,q,matz,z,ierr)
c
integer i,j,k,l,n,en,k1,k2,ld,ll,l1,na,nm,ish,itn,its,km1,lm1,
x enm2,ierr,lor1,enorn
double precision a(nm,n),b(nm,n),z(nm,n),q(nm,n)
double precision r,s,t,a1,a2,a3,ep,sh,u1,u2,u3,v1,v2,v3,ani,
x a11,a12,a21,a22,a33,a34,a43,a44,bni,b11,b12,b22,b33,b34,
x b44,epsa,epsb,eps1,anorm,bnorm,dlamch
logical matz,matq,notlas
c
c
c this subroutine is the second step of the qz algorithm
c for solving generalized matrix eigenvalue problems,
c siam j. numer. anal. 10, 241-256(1973) by moler and stewart,
c as modified in technical note nasa tn d-7305(1973) by ward.
c
c! purpose
c this subroutine accepts a pair of real matrices, one of them
c in upper hessenberg form and the other in upper triangular form.
c it reduces the hessenberg matrix to quasi-triangular form using
c orthogonal transformations while maintaining the triangular form
c of the other matrix. it is usually preceded by qhesz and
c followed by qvalz and, possibly, qvecz.
c
c MODIFIED FROM EISPACK ROUTINE ``QZIT'' TO ALSO RETURN THE Q
c MATRIX.
c
c! calling sequence
c subroutine qitz(nm,n,a,b,eps1,matq,q,matz,z,ierr)
c double precision a(nm,n),b(nm,n),z(nm,n),q(nm,n),eps1
c logical matz,matq
c integer nm,n,ierr
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement;
c
c n is the order of the matrices;
c
c a contains a real upper hessenberg matrix;
c
c b contains a real upper triangular matrix;
c
c eps1 is a tolerance used to determine negligible elements.
c eps1 = 0.0 (or negative) may be input, in which case an
c element will be neglected only if it is less than roundoff
c error times the norm of its matrix. if the input eps1 is
c positive, then an element will be considered negligible
c if it is less than eps1 times the norm of its matrix. a
c positive value of eps1 may result in faster execution,
c but less accurate results;
c en sortie eps1 vaut eps1*(norme de b),utilise par qzval
c et qzvec
c
c matz should be set to .true. if the right hand transformations
c are to be accumulated for later use in computing
c eigenvectors, and to .false. otherwise;
c
c z contains, if matz has been set to .true., the
c transformation matrix produced in the reduction
c by qzhes, if performed, or else the identity matrix.
c if matz has been set to .false., z is not referenced.
c
c matq should be set to .true. if left hand transformation is
c required, and to .false. otherwise
c
c q contains, if the left hand transformation is required,
c the transformation matrix produced by qhesz.
c
c on output:
c
c a has been reduced to quasi-triangular form. the elements
c below the first subdiagonal are still zero and no two
c consecutive subdiagonal elements are nonzero;
c
c b is still in upper triangular form, although its elements
c have been altered.
c
c z contains the product of the right hand transformations
c (for both steps) if matz has been set to .true.;
c
c q contains the product of the right hand transformation with
c initial q
c
c ierr is set to
c zero for normal return,
c j if neither a(j,j-1) nor a(j-1,j-2) has become
c zero after 30*n iterations.
c
c! originator
c
c F Delebecque INRIA
c
c This subroutine is a modification of qzit (eispack).
c Modifications concern computation of the left vector space q, and
c treatment of upper left 2 x 2 block of a to make sure it is really
c in relation with complex eigenvalues.
c
c this version dated august 1983.
cc!
c
ierr = 0
c :::::::::: compute epsa,epsb ::::::::::
anorm = 0.0d+0
bnorm = 0.0d+0
c
do 30 i = 1, n
ani = 0.0d+0
if (i .ne. 1) ani = abs(a(i,i-1))
bni = 0.0d+0
c
do 20 j = i, n
ani = ani + abs(a(i,j))
bni = bni + abs(b(i,j))
20 continue
c
if (ani .gt. anorm) anorm = ani
if (bni .gt. bnorm) bnorm = bni
30 continue
c
if (anorm .eq. 0.0d+0) anorm = 1.0d+0
if (bnorm .eq. 0.0d+0) bnorm = 1.0d+0
ep = eps1
if (ep .gt. 0.0d0) go to 50
c .......... use roundoff level if eps1 is zero ..........
ep = dlamch('p')
50 epsa = ep * anorm
epsb = ep * bnorm
c :::::::::: reduce a to quasi-triangular form, while
c keeping b triangular ::::::::::
lor1 = 1
enorn = n
en = n
itn = 30*n
c :::::::::: begin qz step ::::::::::
60 if (en .le. 1) go to 1001
if (.not. matz) enorn = en
its = 0
na = en - 1
enm2 = na - 1
70 ish = 2
c :::::::::: check for convergence or reducibility.
c for l=en step -1 until 1 do -- ::::::::::
do 80 ll = 1, en
lm1 = en - ll
l = lm1 + 1
if (l .eq. 1) go to 95
if (abs(a(l,lm1)) .le. epsa) go to 90
80 continue
c
90 a(l,lm1) = 0.0d+0
if (l .lt. na) go to 95
c :::::::::: 1-by-1 or 2-by-2 block isolated ::::::::::
en = lm1
go to 60
c :::::::::: check for small top of b ::::::::::
95 ld = l
100 l1 = l + 1
b11 = b(l,l)
if (abs(b11) .gt. epsb) go to 120
b(l,l) = 0.0d+0
s = abs(a(l,l)) + abs(a(l1,l))
u1 = a(l,l) / s
u2 = a(l1,l) / s
r = sign(sqrt(u1*u1+u2*u2),u1)
v1 = -(u1 + r) / r
v2 = -u2 / r
u2 = v2 / v1
c
do 110 j = l, enorn
t = a(l,j) + u2 * a(l1,j)
a(l,j) = a(l,j) + t * v1
a(l1,j) = a(l1,j) + t * v2
t = b(l,j) + u2 * b(l1,j)
b(l,j) = b(l,j) + t * v1
b(l1,j) = b(l1,j) + t * v2
110 continue
if(.not.matq) goto 111
do 112 j=1,n
t=q(l,j)+u2*q(l1,j)
q(l,j)=q(l,j)+t*v1
q(l1,j)=q(l1,j)+t*v2
112 continue
111 continue
c
if (l .ne. 1) a(l,lm1) = -a(l,lm1)
lm1 = l
l = l1
go to 90
120 a11 = a(l,l) / b11
a21 = a(l1,l) / b11
if (ish .eq. 1) go to 140
c :::::::::: iteration strategy ::::::::::
if (itn .eq. 0) go to 1000
if (its .eq. 10) go to 155
c :::::::::: determine type of shift ::::::::::
b22 = b(l1,l1)
if (abs(b22) .lt. epsb) b22 = epsb
b33 = b(na,na)
if (abs(b33) .lt. epsb) b33 = epsb
b44 = b(en,en)
if (abs(b44) .lt. epsb) b44 = epsb
a33 = a(na,na) / b33
a34 = a(na,en) / b44
a43 = a(en,na) / b33
a44 = a(en,en) / b44
b34 = b(na,en) / b44
t = 0.50d+0 * (a43 * b34 - a33 - a44)
r = t * t + a34 * a43 - a33 * a44
if (r .lt. 0.0d+0) go to 150
c :::::::::: determine single shift zeroth column of a ::::::::::
ish = 1
r = sqrt(r)
sh = -t + r
s = -t - r
if (abs(s-a44) .lt. abs(sh-a44)) sh = s
c if(enm2.le.0) goto 140
c :::::::::: look for two consecutive small
c sub-diagonal elements of a.
c for l=en-2 step -1 until ld do -- ::::::::::
do 130 ll = ld, enm2
l = enm2 + ld - ll
if (l .eq. ld) go to 140
lm1 = l - 1
l1 = l + 1
t = a(l,l)
if (abs(b(l,l)) .gt. epsb) t = t - sh * b(l,l)
if (abs(a(l,lm1)) .le. abs(t/a(l1,l)) * epsa) go to 100
130 continue
c
140 a1 = a11 - sh
a2 = a21
if (l .ne. ld) a(l,lm1) = -a(l,lm1)
go to 160
c :::::::::: determine double shift zeroth column of a ::::::::::
150 if (en .le. 2) go to 1001
a12 = a(l,l1) / b22
a22 = a(l1,l1) / b22
b12 = b(l,l1) / b22
a1 = ((a33 - a11) * (a44 - a11) - a34 * a43 + a43 * b34 * a11)
x / a21 + a12 - a11 * b12
a2 = (a22 - a11) - a21 * b12 - (a33 - a11) - (a44 - a11)
x + a43 * b34
a3 = a(l1+1,l1) / b22
go to 160
c :::::::::: ad hoc shift ::::::::::
155 a1 = 0.0d+0
a2 = 1.0d+0
a3 = 1.16050d+0
160 its = its + 1
itn = itn - 1
if (.not. matz) lor1 = ld
c :::::::::: main loop ::::::::::
do 260 k = l, na
notlas = k .ne. na .and. ish .eq. 2
k1 = k + 1
k2 = k + 2
km1 = max(k-1,l)
ll = min(en,k1+ish)
if (notlas) go to 190
c :::::::::: zero a(k+1,k-1) ::::::::::
if (k .eq. l) go to 170
a1 = a(k,km1)
a2 = a(k1,km1)
170 s = abs(a1) + abs(a2)
if (s .eq. 0.0d+0) go to 70
u1 = a1 / s
u2 = a2 / s
r = sign(sqrt(u1*u1+u2*u2),u1)
v1 = -(u1 + r) / r
v2 = -u2 / r
u2 = v2 / v1
c
do 180 j = km1, enorn
t = a(k,j) + u2 * a(k1,j)
a(k,j) = a(k,j) + t * v1
a(k1,j) = a(k1,j) + t * v2
t = b(k,j) + u2 * b(k1,j)
b(k,j) = b(k,j) + t * v1
b(k1,j) = b(k1,j) + t * v2
180 continue
if(.not.matq) goto 181
do 182 j=1,n
t=q(k,j)+u2*q(k1,j)
q(k,j)=q(k,j)+t*v1
q(k1,j)=q(k1,j)+t*v2
182 continue
181 continue
c
if (k .ne. l) a(k1,km1) = 0.0d+0
go to 240
c :::::::::: zero a(k+1,k-1) and a(k+2,k-1) ::::::::::
190 if (k .eq. l) go to 200
a1 = a(k,km1)
a2 = a(k1,km1)
a3 = a(k2,km1)
200 s = abs(a1) + abs(a2) + abs(a3)
if (s .eq. 0.0d+0) go to 260
u1 = a1 / s
u2 = a2 / s
u3 = a3 / s
r = sign(sqrt(u1*u1+u2*u2+u3*u3),u1)
v1 = -(u1 + r) / r
v2 = -u2 / r
v3 = -u3 / r
u2 = v2 / v1
u3 = v3 / v1
c
do 210 j = km1, enorn
t = a(k,j) + u2 * a(k1,j) + u3 * a(k2,j)
a(k,j) = a(k,j) + t * v1
a(k1,j) = a(k1,j) + t * v2
a(k2,j) = a(k2,j) + t * v3
t = b(k,j) + u2 * b(k1,j) + u3 * b(k2,j)
b(k,j) = b(k,j) + t * v1
b(k1,j) = b(k1,j) + t * v2
b(k2,j) = b(k2,j) + t * v3
210 continue
if(.not.matq) goto 211
do 212 j=1,n
t=q(k,j)+u2*q(k1,j)+u3*q(k2,j)
q(k,j)=q(k,j)+t*v1
q(k1,j)=q(k1,j)+t*v2
q(k2,j)=q(k2,j)+t*v3
212 continue
211 continue
c
if (k .eq. l) go to 220
a(k1,km1) = 0.0d+0
a(k2,km1) = 0.0d+0
c :::::::::: zero b(k+2,k+1) and b(k+2,k) ::::::::::
220 s = abs(b(k2,k2)) + abs(b(k2,k1)) + abs(b(k2,k))
if (s .eq. 0.0d+0) go to 240
u1 = b(k2,k2) / s
u2 = b(k2,k1) / s
u3 = b(k2,k) / s
r = sign(sqrt(u1*u1+u2*u2+u3*u3),u1)
v1 = -(u1 + r) / r
v2 = -u2 / r
v3 = -u3 / r
u2 = v2 / v1
u3 = v3 / v1
c
do 230 i = lor1, ll
t = a(i,k2) + u2 * a(i,k1) + u3 * a(i,k)
a(i,k2) = a(i,k2) + t * v1
a(i,k1) = a(i,k1) + t * v2
a(i,k) = a(i,k) + t * v3
t = b(i,k2) + u2 * b(i,k1) + u3 * b(i,k)
b(i,k2) = b(i,k2) + t * v1
b(i,k1) = b(i,k1) + t * v2
b(i,k) = b(i,k) + t * v3
230 continue
c
b(k2,k) = 0.0d+0
b(k2,k1) = 0.0d+0
if (.not. matz) go to 240
c
do 235 i = 1, n
t = z(i,k2) + u2 * z(i,k1) + u3 * z(i,k)
z(i,k2) = z(i,k2) + t * v1
z(i,k1) = z(i,k1) + t * v2
z(i,k) = z(i,k) + t * v3
235 continue
c :::::::::: zero b(k+1,k) ::::::::::
240 s = abs(b(k1,k1)) + abs(b(k1,k))
if (s .eq. 0.0d+0) go to 260
u1 = b(k1,k1) / s
u2 = b(k1,k) / s
r = sign(sqrt(u1*u1+u2*u2),u1)
v1 = -(u1 + r) / r
v2 = -u2 / r
u2 = v2 / v1
c
do 250 i = lor1, ll
t = a(i,k1) + u2 * a(i,k)
a(i,k1) = a(i,k1) + t * v1
a(i,k) = a(i,k) + t * v2
t = b(i,k1) + u2 * b(i,k)
b(i,k1) = b(i,k1) + t * v1
b(i,k) = b(i,k) + t * v2
250 continue
c
b(k1,k) = 0.0d+0
if (.not. matz) go to 260
c
do 255 i = 1, n
t = z(i,k1) + u2 * z(i,k)
z(i,k1) = z(i,k1) + t * v1
z(i,k) = z(i,k) + t * v2
255 continue
c
260 continue
c :::::::::: end qz step ::::::::::
go to 70
c :::::::::: set error -- neither bottom subdiagonal element
c has become negligible after 50 iterations ::::::::::
1000 ierr = en
c :::::::::: save epsb for use by qzval and qzvec ::::::::::
1001 if (n .gt. 1) eps1 = epsb
return
c :::::::::: last card of qzit ::::::::::
end
|