summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/fortran/qhesz.f
blob: ee6c8fe695574ea28516b5222ff16d4234737929 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      subroutine qhesz(nm,n,a,b,matq,q,matz,z)
c
      integer i,j,k,l,n,lb,l1,nm,nk1,nm1,nm2
      double precision a(nm,n),b(nm,n),z(nm,n),q(nm,n)
      double precision r,s,t,u1,u2,v1,v2,rho
      logical matz,matq
c
c! purpose
c     this subroutine accepts a pair of real general matrices and
c     reduces one of them to upper hessenberg form and the other
c     to upper triangular form using orthogonal transformations.
c     it is usually followed by  qzit,  qzval  and, possibly,  qzvec.
c
c! calling sequence
c
c     subroutine qhesz(nm,n,a,b,matq,q,matz,z)
c
c     on input:
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement;
c
c        n is the order of the matrices;
c
c        a contains a real general matrix;
c
c        b contains a real general matrix;
c
c        matz should be set to .true. if the right hand transformations
c          are to be accumulated for later use in computing
c          eigenvectors, and to .false. otherwise.
c
c     on output:
c
c        a has been reduced to upper hessenberg form.  the elements
c          below the first subdiagonal have been set to zero;
c
c        b has been reduced to upper triangular form.  the elements
c          below the main diagonal have been set to zero;
c
c        z contains the product of the right hand transformations if
c          matz has been set to .true.  otherwise, z is not referenced.
c
c! originator
c
c     this subroutine is the first step of the qz algorithm
c     for solving generalized matrix eigenvalue problems,
c     siam j. numer. anal. 10, 241-256(1973) by moler and stewart.
c     (modification de la routine qzhes de eispack pour avoir
c     la matrice unitaire de changement de base sur les lignes
c     donne par la matrice q .memes conventions que pour z.)
c     f.d.
c!
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c     ------------------------------------------------------------------
c
c     :::::::::: initialize z ::::::::::
      if (.not. matz) go to 10
c
      do 3 i = 1, n
c
         do 2 j = 1, n
            z(i,j) = 0.0d+0
    2    continue
c
         z(i,i) = 1.0d+0
    3 continue
   10 continue
      if(.not.matq) goto 11
      do 31 i=1,n
      do 21 j=1,n
      q(i,j)=0.0d+0
  21  continue
      q(i,i)=1.0d+0
  31  continue
  11  continue
c     :::::::::: reduce b to upper triangular form ::::::::::
      if (n .le. 1) go to 170
      nm1 = n - 1
c
      do 100 l = 1, nm1
         l1 = l + 1
         s = 0.0d+0
c
         do 20 i = l1, n
            s = s + abs(b(i,l))
   20    continue
c
         if (s .eq. 0.0d+0) go to 100
         s = s + abs(b(l,l))
         r = 0.0d+0
c
         do 25 i = l, n
            b(i,l) = b(i,l) / s
            r = r + b(i,l)**2
   25    continue
c
         r = sign(sqrt(r),b(l,l))
         b(l,l) = b(l,l) + r
         rho = r * b(l,l)
c
         do 50 j = l1, n
            t = 0.0d+0
c
            do 30 i = l, n
               t = t + b(i,l) * b(i,j)
   30       continue
c
            t = -t / rho
c
            do 40 i = l, n
               b(i,j) = b(i,j) + t * b(i,l)
   40       continue
c
   50    continue
c
         do 80 j = 1, n
            t = 0.0d+0
c
            do 60 i = l, n
               t = t + b(i,l) * a(i,j)
   60       continue
c
            t = -t / rho
c
            do 70 i = l, n
               a(i,j) = a(i,j) + t * b(i,l)
   70       continue
c
   80    continue
      if(.not.matq) goto 99
         do 780 j = 1, n
            t = 0.0d+0
c
            do 760 i = l, n
               t = t + b(i,l) * q(i,j)
  760     continue
c
            t = -t / rho
c
            do 770 i = l, n
          q(i,j)=q(i,j)+t*b(i,l)
  770  continue
c
  780    continue
  99  continue
c
         b(l,l) = -s * r
c
         do 90 i = l1, n
            b(i,l) = 0.0d+0
   90    continue
c
  100 continue
c     :::::::::: reduce a to upper hessenberg form, while
c                keeping b triangular ::::::::::
      if (n .eq. 2) go to 170
      nm2 = n - 2
c
      do 160 k = 1, nm2
         nk1 = nm1 - k
c     :::::::::: for l=n-1 step -1 until k+1 do -- ::::::::::
         do 150 lb = 1, nk1
            l = n - lb
            l1 = l + 1
c     :::::::::: zero a(l+1,k) ::::::::::
            s = abs(a(l,k)) + abs(a(l1,k))
            if (s .eq. 0.0d+0) go to 150
            u1 = a(l,k) / s
            u2 = a(l1,k) / s
            r = sign(sqrt(u1*u1+u2*u2),u1)
            v1 =  -(u1 + r) / r
            v2 = -u2 / r
            u2 = v2 / v1
c
            do 110 j = k, n
               t = a(l,j) + u2 * a(l1,j)
               a(l,j) = a(l,j) + t * v1
               a(l1,j) = a(l1,j) + t * v2
  110       continue
c
            a(l1,k) = 0.0d+0
c
            do 120 j = l, n
               t = b(l,j) + u2 * b(l1,j)
               b(l,j) = b(l,j) + t * v1
               b(l1,j) = b(l1,j) + t * v2
  120       continue
      if(.not.matq) goto 122
      do 121 j=1,n
      t=q(l,j)+u2*q(l1,j)
      q(l,j)=q(l,j)+t*v1
      q(l1,j)=q(l1,j)+t*v2
  121 continue
  122 continue
c     :::::::::: zero b(l+1,l) ::::::::::
            s = abs(b(l1,l1)) + abs(b(l1,l))
            if (s .eq. 0.0d+0) go to 150
            u1 = b(l1,l1) / s
            u2 = b(l1,l) / s
            r = sign(sqrt(u1*u1+u2*u2),u1)
            v1 =  -(u1 + r) / r
            v2 = -u2 / r
            u2 = v2 / v1
c
            do 130 i = 1, l1
               t = b(i,l1) + u2 * b(i,l)
               b(i,l1) = b(i,l1) + t * v1
               b(i,l) = b(i,l) + t * v2
  130       continue
c
            b(l1,l) = 0.0d+0
c
            do 140 i = 1, n
               t = a(i,l1) + u2 * a(i,l)
               a(i,l1) = a(i,l1) + t * v1
               a(i,l) = a(i,l) + t * v2
  140       continue
c
            if (.not. matz) go to 150
c
            do 145 i = 1, n
               t = z(i,l1) + u2 * z(i,l)
               z(i,l1) = z(i,l1) + t * v1
               z(i,l) = z(i,l) + t * v2
  145       continue
c
  150    continue
c
  160 continue
c
  170 return
c     :::::::::: last card of qzhes ::::::::::
      end