summaryrefslogtreecommitdiff
path: root/modules/cacsd/src/fortran/onface.f
blob: 2bd49e23d0e6a3d0ef6bc9535b5eea172ef6cb88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
c Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
c Copyright (C) INRIA
c 
c This file must be used under the terms of the CeCILL.
c This source file is licensed as described in the file COPYING, which
c you should have received as part of this distribution.  The terms
c are also available at    
c http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt

      subroutine onface(nq,tq,tg,ng,nprox,ierr,w)
C!but
C     il est question ici de calculer (ou d estimer)
C     le polynome (ou point) qui se situe a l'intersection
C     de la recherche et de la face-frontiere du domaine.
C!liste d'appel
C     subroutine onface(nq,tq,nprox)
C
C     double precision tq(0:nq),w(*)
C     integer nq,nprox,ierr
C
C     Entree :
C     - nq. est le degre du polynome q(z) avant toute
C        modification.
C     - tq. est le tableau de ses coefficients
C     - nprox. est l indice de la face par laquelle on estime
C        que la recherche a franchi la frontiere du domaine.
C
C     Sortie :
C     -nq. est alors le degre des polynomes de la face
C       traversee et donc du polynome intersection. Sa valeur
C       est inferieur de 1 ou 2 a sa valeur precedente.
C     - tq. contient en sortie les coefficients du polynome
C       intersection dans le domaine de la face traversee.
C
C     Tableau de travail
C     - w : 12*nq+ng+1
C!
      implicit double precision (a-h,o-y)
      dimension tq(0:nq), w(*),tg(ng+1)
C
      dimension tps(0:1), taux2(0:2), tabeta(0:2), xx(1)
      common /sortie/ io,info,ll
C
C     decoupage du tableau de travail
      lqaux = 1
      lqdot = lqaux
      lrq0 = lqdot + nq + 1
      lrq1 = lrq0 + nq
      lrgd0 = lrq1 + nq
      lrgd1 = lrgd0 + nq
      lgp = lrgd1 + nq
      lgp1 = lgp + 2*nq - 2
      lbeta = lgp1
      lw = lbeta + 2*nq - 2
      lfree = lw+3*nq+ng+1

C
      nqvra = nq
C
      tps(1) = 1.0d+0
      tps(0) = 1.0d+0
C
      if (nprox .ne. 0) then
        tps(0) = real(nprox)
C     calcul du reste de la division de q par tps
        call horner(tq,nq,-tps(0),0.0d+0,srq,xx)
C     calcul du reste de la division de qdot  par 1+z
        call feq1(nq,t,tq,tg,ng,w(lqdot),w(lw))
        call horner(w(lqdot),nq,-tps(0),0.0d+0,srgd,xx)
C
        call daxpy(nq,(-srq)/srgd,w(lqdot),1,tq,1)
C
        call dpodiv(tq,tps,nq,1)
        if (info .gt. 0) call outl2(70,1,1,xx,xx,x,x)
        if (info .gt. 1) call outl2(71,1,1,tq,xx,x,x)
        call dcopy(nq,tq(1),1,tq,1)
        nq = nq - 1
C
      elseif (nprox .eq. 0) then
C
        taux2(2) = 1.0d+0
        taux2(1) = 0.0d+0
        taux2(0) = 1.0d+0
C
        call dcopy(nq+1,tq,1,w(lqaux),1)
        do 200 ndiv = 0,nq-2
          call dpodiv(w(lqaux),taux2,nq-ndiv,2)
          w(lrq1+ndiv) = w(lqaux+1)
          w(lrq0+ndiv) = w(lqaux)
C
          do 180 j = 2,nq-ndiv
            w(lqaux+j-1) = w(lqaux+j)
 180      continue
          w(lqaux) = 0.0d+0
 200    continue
        w(lrq1-1+nq) = w(lqaux+1)
        w(lrq0-1+nq) = w(lqaux)
C
        call feq1(nq,t,tq,tg,ng,w(lqaux),w(lw))
        nqdot = nq - 1
C
        do 240 ndiv = 0,nqdot-2
          call dpodiv(w(lqaux),taux2,nqdot-ndiv,2)
          w(lrgd1+ndiv) = w(lqaux+1)
          w(lrgd0+ndiv) = w(lqaux)
C
          do 220 j = 2,nqdot-ndiv
            w(lqaux+j-1) = w(lqaux+j)
 220      continue
          w(lqaux) = 0.0d+0
 240    continue
        w(lrgd1-1+nqdot) = w(lqaux+1)
        w(lrgd0-1+nqdot) = w(lqaux)
C
C     - construction du polynome gp(z) dont on cherchera une racine
C     comprise entre -2 et +2 -----------------------------
C
        call dset(2*nq-2,0.0d+0,w(lgp),1)
        call dset(2*nq-2,0.0d+0,w(lgp1),1)
C
        do 260 j = 1,nq
          do 258 i = 1,nqdot
            k = i + j - 2
            w(lgp+k) = w(lgp+k) + ((-1)**k)*w(lrq0-1+j)*w(lrgd1-1+i)
            w(lgp1+k) = w(lgp1+k) + ((-1)**k)*w(lrq1-1+j)*w(lrgd0-1+i)
 258      continue
 260    continue
C
        call ddif(2*nq-2,w(lgp1),1,w(lgp),1)
        ngp = 2*nq - 3
        call rootgp(ngp,w(lgp),nbeta,w(lbeta),ierr,w(lw))
        if (ierr .ne. 0) return
C
        do 299 k = 1,nbeta
C
C     - calcul de t (coeff multiplicateur) -
C
          auxt1 = 0.0d+0
          do 280 i = 1,nq
            auxt1 = auxt1 + w(lrq1-1+i)*((-w(lbeta-1+k))**(i-1))
 280      continue
C
          auxt2 = 0.0d+0
          do 290 i = 1,nqdot
            auxt2 = auxt2 + w(lrgd1-1+i)*((-w(lbeta-1+k))**(i-1))
 290      continue
C
          tmult = (-auxt1) / auxt2
C
          if (k .eq. 1) then
            t0 = tmult
            beta0 = w(lbeta)
          elseif (abs(tmult) .lt. abs(t0)) then
            t0 = tmult
            beta0 = w(lbeta-1+k)
          endif
C
 299    continue
C
        call feq1(nq,t,tq,tg,ng,w(lqdot),w(lw))
        call daxpy(nq,t0,w(lqdot),1,tq,1)
C
        tabeta(2) = 1.0d+0
        tabeta(1) = beta0
        tabeta(0) = 1.0d+0
        call dpodiv(tq,tabeta,nq,2)
        if (info .gt. 0) call outl2(70,2,2,xx,xx,x,x)
        if (info .gt. 1) call outl2(71,2,2,tq,xx,x,x)
C
        call dcopy(nq-1,tq(2),1,tq,1)
        nq = nq - 2
C
      endif
C
      return
      end