1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 1985-2010 - INRIA - Serge Steer
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [h,num,den]=ss2tf(sl,rmax)
// State-space to transfer function.
// Syntax:
// h=ss2tf(sl)
// h=ss2tf(sl,'b')
// h=ss2tf(sl,rmax)
//
// sl : linear system (syslin list)
// h : transfer matrix
// rmax : optional parameter controlling the conditioning in
// block diagonalization method is used (If 'b' is entered
// a default value is used)
// Method: By default, one uses characteristic polynomial and
// det(A+Eij)=det(A)+C(i,j) where C is the adjugate matrix of A
// Other method used : block-diagonalization (generally
// this gives a less accurate result).
//
//!
if type(sl)==1|type(sl)==2 then
h=sl
return
end
if typeof(sl)<>"state-space" then
error(msprintf(_("%s: Wrong type for input argument #%d: State-space form expected.\n"),"ss2tf",1));
end
//Handle special cases (no input, no output, no state)
if sl.B==[] then h=sl.D;num=sl.D;den=eye(sl.D);return;end
if sl.C==[] then h=sl.D;num=sl.D;den=eye(sl.D);return;end
if size(sl.A,"*")==0 then //no state
h=sl.D
return
end
//Determine the rational fraction formal variable name
domaine=sl.dt
if type(domaine)==1 then var="z";end
if domaine=="c" then var="s";end;
if domaine=="d" then var="z";end;
if domaine==[] then
var="s";
if type(sl.D)==2 then var=varn(sl.D);end
end
//Determine the algorithm
[lhs,rhs]=argn(0);
meth="p";
if rhs==2 then
if type(rmax)==10 then
meth=part(rmax,1);
if and(meth<>["p","b"]) then
error(msprintf(_( "%s: Wrong value for input argument #%d: Must be in the set {%s}.\n"),"ss2tf",1,"''p'',''b''"));
end
rhs=1;
else
meth="b";
end
end
select meth
case "b" // Block diagonalization + Leverrier method
a=sl.A;
[n1,n1]=size(a);
z=poly(0,var);
//block diagonal decomposition of the state matrix
if rhs==1 then
[a,x,bs]=bdiag(a);
else
[a,x,bs]=bdiag(a,rmax);
end
k=1;m=[];v=ones(1,n1);den=1;
for n=bs' //loop on blocks
k1=k:k-1+n;
// Leverrier algorithm
h=z*eye(n,n)-a(k1,k1);
f=eye(n,n);
for kl=1:n-1,
b=h*f;
d=-sum(diag(b))/kl;
f=b+eye()*d;
end
d=sum(diag(h*f))/n;
//
den=den*d;
l=[1:k-1,k+n:n1];
if l<>[] then v(l)=v(l)*d;end
m=[m,x(:,k1)*f];
k=k+n;
end
if lhs==3 then
h=sl.D,
num=sl.C*m*diag(v)*(x\sl.B);
else
m=sl.C*m*diag(v)*(x \ sl.B)+sl.D*den;
[m,den]=simp(m,den*ones(m))
h=syslin(domaine,m,den)
end
case "p" then //Adjugate matrix method
Den=poly(sl.A,var) //common denominator
na=degree(Den);den=[];
[m,n]=size(sl.D)
c=sl.C
for l=1:m //loop on outputs
[m,i]=max(abs(c(l,:)));
if m<>0 then
ci=c(l,i)
t=eye(na,na)*ci;
t(i,:)=[-c(l,1:i-1), 1, -c(l,i+1:na)]
al=sl.A*t;
t=eye(na,na)/ci;
t(i,:)=[c(l,1:i-1)/ci, 1, c(l,i+1:na)/ci]
al=t*al;ai=al(:,i),
b=t*sl.B
for k=1:n //loop on inputs
al(:,i)=ai+b(:,k);
[nlk,dlk]=simp(poly(al,var),Den)
den(l,k)=dlk;
num(l,k)=-(nlk-dlk)*ci;
end
else
num(l,1:n)=0*ones(1,n);
den(l,1:n)=ones(1,n);
end
end
if lhs==3 then
h=sl.D;
else
w=num./den+sl.D;
if type(w)==1 then
h=w; //degenerate case
else
h=syslin(domaine,w);
end
end
end
endfunction
|