1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2010-2011 - INRIA - Serge Steer
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [phm,fr]=p_margin(h)
//compute the phase margin of a SISO transfer function
select typeof(h)
case "rational" then
case "state-space" then
h=ss2tf(h);
else
error(97,1)
end
if or(size(h)<>[1 1]) then
error(msprintf(_("%s: Wrong size for input argument #%d: Single input, single output system expected.\n"),"p_margin",1))
end
eps=1.e-7;// threshold used for testing if complex numbers are real or pure imaginary
if h.dt=="c" then //continuous time case
w=poly(0,"w");
niw=horner(h.num,%i*w);
diw=horner(h.den,%i*w);
// |n(iw)/d(iw)|=1 <-- (n(iw)*n(-iw))/(d(iw)*d(-iw))=1 <-- (n(iw)*n(-iw)) - (d(iw)*d(-iw))=0
w=roots(real(niw*conj(niw)-diw*conj(diw)),"e");
//select positive real roots
ws=real(w(find((abs(imag(w))<eps)&(real(w)>0)))); //frequency points with unitary modulus
if ws==[] then
phm=[];
fr=[];
return
end
f=horner(h,%i*ws);
else //discrete time case
if h.dt=="d" then
dt=1;
else
dt=h.dt;
end
// |h(e^(i*w*dt))|=1 <-- h(e^(i*w*dt))*h(e^(-i*w*dt))
z=poly(0,varn(h.den));
sm=simp_mode();
simp_mode(%f);
hh=h*horner(h,1/z)-1;
simp_mode(sm);
//find the numerator roots
z=roots(hh.num,"e");
z(abs(abs(z)-1)>eps)=[];// retain only roots with modulus equal to 1
w=log(z)/(%i*dt);
ws=real(w(abs(imag(w))<eps&real(w)>0)); //frequency points with unitary modulus
if ws==[] then
phm=%inf;
fr=[];
return
end
f=horner(h,exp(%i*ws*dt));
end
phi=atand(imag(f),real(f));// phase of the frequency response (in [-180 180])
//avoid near 0 negative phases that will give phm=180 instead of -180
phi(phi>-1e-12&phi<0)=0;
//compute the margins
phm=pmodulo(phi,360)-180;
//select the min value together with associated frequency in Hz
[w,k]=min(abs(phm));
phm=phm(k)
fr=ws(k)/(2*%pi);
endfunction
|