1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2011 - INRIA - Serge Steer
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [fmin,fmax]=nyquistfrequencybounds(H,bounds)
//find frequencies that reaches the nyquist bounds on real an imag part
fname="nyquistFrequencyBounds" //for error messages
if or(size(bounds)<>[2 2]) then
error(msprintf(_("%s: Wrong size for argument #%d: (%d,%d) expected.\n"),fname,2,2,2))
end
if or(bounds(2,:)<bounds(1,:)) then
error(msprintf(_("%s: Wrong value for input argument #%d: second row must be greater than first one.\n"),fname,2))
end
if and(typeof(H)<>["state-space" "rational"]) then
error(msprintf(_("%s: Wrong type for input argument #%d: Linear dynamical system expected.\n"),fname,1))
end
if size(H,"*")<>1 then
error(msprintf(_("Wrong type for argument #%d: SISO expected.\n"),fname,1))
end
if typeof(H)=="state-space" then
H=ss2tf(H)
end
dom=H.dt
if dom==[]|dom=="d" then dom=1,end
eps=1d-10
frq=[];
orient=[]
if dom=="c" then
c=2*%i*%pi
function f=arg2freq(y)
f=y/c;
endfunction
Hr=(H+horner(H,-%s))/2;
Hi=(H-horner(H,-%s))/2;
else
c=2*%i*%pi*dom
function f=arg2freq(y)
f=log(y)/c;
endfunction
Hr=(H+horner(H,1/%z))/2;
Hi=(H-horner(H,1/%z))/2;
end
// computing frequencies that make the nyquist locus to cross
// the real part lower bound
f=arg2freq(roots(numer(Hr-bounds(1,1))));
f=real(f(real(f)>0&abs(imag(f)./abs(f))<eps));
//keep only those that give imaginary parts inside the bounds
im=imag(repfreq(H,f));
f=f(im<=bounds(2,2)&im>=bounds(1,2))
if f<>[] then
orient=[orient imag(repfreq(derivat(Hr),f))<0]
frq=[frq;f];
end
// computing frequencies that make the nyquist locus to cross
// the real part upper bound
f=arg2freq(roots(numer(Hr-bounds(2,1))));
f=real(f(real(f)>0&abs(imag(f)./abs(f))<eps));
//keep only those that give imaginary parts inside the bounds
im=imag(repfreq(H,f));
f=f(im<=bounds(2,2)&im>=bounds(1,2))
if f<>[] then
orient=[orient imag(repfreq(derivat(Hr),f))>0]
frq=[frq;f];
end
// computing frequencies that make the nyquist locus to cross
// the imaginary part lower bound
f=arg2freq(roots(numer(Hi-%i*bounds(1,2))));
f=real(f(real(f)>0&abs(imag(f)./abs(f))<eps));
//keep only those that give real parts inside the bounds
re=real(repfreq(H,f));
f=f(re<=bounds(2,1)&re>=bounds(1,1))
if f<>[] then
orient=[orient real(repfreq(derivat(Hi),f))>0]
frq=[frq;f];
end
// computing frequencies that make the nyquist locus to cross
// the imaginary part upper bound
f=arg2freq(roots(numer(Hi-%i*bounds(2,2))));
f=real(f(real(f)>0&abs(imag(f)./abs(f))<eps));
//keep only those that give real parts inside the bounds
re=real(repfreq(H,f));
f=f(re<=bounds(2,1)&re>=bounds(1,1))
if f<>[] then
orient=[orient real(repfreq(derivat(Hi),f))<0]
frq=[frq;f];
end
if frq==[] then
//check if there is at least one point inside the bounds
r=repfreq(H,%pi)
if real(r)<bounds(1,1)|real(r)>bounds(2,1)|imag(r)<bounds(1,2)| ...
imag(r)>bounds(2,2) then
fmin=[];fmax=[]
else
fmin=0;fmax=%inf
end
else
//looking for the lowest frequency for which the locus enters the
//area and the highest for which the locus leaves it.
[frq,k]=gsort(frq,"g","i");
orient=orient(k)
if ~orient(1) then
//locus starts inside the area
frq=[0;frq]
end
if orient($) then
//locus ends inside the area
frq=[frq;%inf]
end
fmin=frq(1)
fmax=frq($)
end
endfunction
|