1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 1984-2011 - INRIA - Serge STEER
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function nyquist(varargin)
// Nyquist plot
//!
rhs=size(varargin);
if rhs == 0 then
//Hall chart as a grid for nyquist
s=poly(0,"s");
Plant=syslin("c",16000/((s+1)*(s+10)*(s+100)));
//two degree of freedom PID
tau=0.2;xsi=1.2;
PID=syslin("c",(1/(2*xsi*tau*s))*(1+2*xsi*tau*s+tau^2*s^2));
nyquist([Plant;Plant*PID],0.5,100,["Plant";"Plant and PID corrector"]);
hallchart(colors=color("light gray")*[1 1])
//move the caption in the lower rigth corner
ax=gca();Leg=ax.children(1);
Leg.legend_location="in_upper_left";
return;
end
symmetry=%t
if type(varargin(rhs))==4 then //symmetrization flag
symmetry=varargin(rhs)
rhs=rhs-1
end
if type(varargin(rhs))==10 then
comments=varargin(rhs);
rhs=rhs-1;
else
comments=[];
end
fname="nyquist";//for error messages
fmax=[];
if or(typeof(varargin(1))==["state-space" "rational"]) then
//sys,fmin,fmax [,pas] or sys,frq
refdim=1; //for error message
sltyp=varargin(1).dt;
if rhs==1 then
[frq,repf,splitf]=repfreq(varargin(1),1d-3,1d3);
elseif rhs==2 then //sys,frq
if size(varargin(2),2)<2 then
error(msprintf(_("%s: Wrong size for input argument #%d: A row vector with length>%d expected.\n"),fname,2,1))
end
[frq,repf]=repfreq(varargin(1:rhs));
elseif or(rhs==(3:4)) then //sys,fmin,fmax [,pas]
[frq,repf,splitf]=repfreq(varargin(1:rhs));
else
error(msprintf(_("%s: Wrong number of input arguments: %d to %d expected.\n"),fname,1,5))
end
elseif type(varargin(1))==1 then
//frq,db,phi [,comments] or frq, repf [,comments]
refdim=2;
sltyp="x";
splitf=[];
splitf=1;
select rhs
case 2 then //frq,repf
frq=varargin(1);
repf=varargin(2);
if size(frq,2)<2 then
error(msprintf(_("%s: Wrong size for input argument #%d: A row vector with length>%d expected.\n"),fname,1,1))
end
if size(frq,2)<>size(varargin(2),2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),fname,1,2))
end
case 3 then //frq,db,phi
frq=varargin(1);
if size(frq,2)<>size(varargin(2),2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),fname,1,2));
end
if size(frq,2)<>size(varargin(3),2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),fname,1,3));
end
repf=exp(log(10)*varargin(2)/20 + %pi*%i/180*varargin(3));
else
error(msprintf(_("%s: Wrong number of input arguments: %d to %d expected.\n"),fname,2,4))
end
else
error(msprintf(_("%s: Wrong type for input argument #%d: Linear dynamical system or row vector of floats expected.\n"),fname,1));
end;
if size(frq,1)==1 then
ilf=0;
else
ilf=1;
end
[mn,n]=size(repf);
if and(size(comments,"*")<>[0 mn]) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same number of elements expected.\n"),fname,refdim,rhs+1));
end
//
repi=imag(repf);
repf=real(repf);
// computing bounds of graphic window
mnx=min(-1,min(repf));// to make the critical point visible
mxx=max(-1,max(repf));
if symmetry then
mxy=max(0,max(abs(repi)));
mny=min(0,-mxy);
else
mxy=max(0,max(repi));
mny=min(0,min(repi));
end
dx=(mxx-mnx)/30;
dy=(mxy-mny)/30;
rect=[mnx-dx,mny-dy;mxx+dx,mxy+dy];
fig=gcf();
immediate_drawing=fig.immediate_drawing;
fig.immediate_drawing="off";
ax=gca();
if ax.children==[] then
ax.data_bounds=rect;
ax.axes_visible="on";
ax.grid=color("lightgrey")*ones(1,3)
ax.title.text=_("Nyquist plot");
if sltyp=="c" then
ax.x_label.text=_("Re(h(2iπf))");
ax.y_label.text=_("Im(h(2iπf))");
elseif sltyp=="x" then
ax.x_label.text=_("Re");
ax.y_label.text=_("Im");
else
ax.x_label.text=_("Re(h(exp(2iπf*dt)))");
ax.y_label.text=_("Im(h(exp(2iπf*dt)))");
end
else
rect= ax.data_bounds
mnx=rect(1,1);
mxx=rect(2,1)
mny=rect(1,2)
mxy=rect(2,2)
end
// drawing the curves
splitf($+1)=n+1;
ksplit=1;sel=splitf(ksplit):splitf(ksplit+1)-1;
R=[repf(:,sel)]; I=[repi(:,sel)];
F=frq(:,sel);
for ksplit=2:size(splitf,"*")-1
sel=splitf(ksplit):splitf(ksplit+1)-1;
R=[R %nan(ones(mn,1)) repf(:,sel)];
I=[I %nan(ones(mn,1)) repi(:,sel)];
F=[F %nan(ones(size(frq,1),1)) frq(:,sel)];
end
Curves=[]
kf=1
if symmetry then
for k=1:mn
xpoly([R(k,:) R(k,$:-1:1)],[I(k,:) -I(k,$:-1:1)]);
e=gce();e.foreground=k;
e.display_function = "formatNyquistTip";
e.display_function_data = [F(kf,:) -1*F(kf,$:-1:1)];
Curves=[Curves,e];
kf=kf+ilf;
end
else
for k=1:mn
xpoly(R(k,:),I(k,:));
e=gce();e.foreground=k;
e.display_function = "formatNyquistTip";
e.display_function_data = F(kf,:);
Curves=[Curves,e];
kf=kf+ilf;
end
end
clear R I
kk=1;p0=[repf(:,kk) repi(:,kk)];ks=1;d=0;
dx=rect(2,1)-rect(1,1);
dy=rect(2,2)-rect(1,2);
dx2=dx^2;
dy2=dy^2;
// collect significant frequencies along the curve
//-------------------------------------------------------
Ic=min(cumsum(sqrt((diff(repf,1,"c").^2)/dx2+ (diff(repi,1,"c").^2)/dy2),2),"r");
kk=1;
L=0;
DIc=0.2;
while %t
ksup=find(Ic-L>DIc);
if ksup==[] then break,end
kk1=min(ksup);
L=Ic(kk1);
Ic(1:kk1)=[];
kk=kk+kk1;
if min(abs(frq(:,ks($))-frq(:,kk))./abs(frq(:,kk)))>0.001 then
if min(sqrt(((repf(:,ks)-repf(:,kk)*ones(ks)).^2)/dx2+..
((repi(:,ks)-repi(:,kk)*ones(ks)).^2)/dy2)) >DIc then
ks=[ks kk];
d=0;
end
end
end
if ks($)~=n then
if min(((repf(:,ks(1))-repf(:,n)).^2)/dx2+((repi(:,ks(1))-repi(:,n)).^2)/dy2)>0.01 then
ks=[ks n];
end
end
// display of parametrization (frequencies along the curve)
//-------------------------------------------------------
kf=1
if ks($)<size(repf,2) then last=$;else last=$-1;end
for k=1:mn,
L=[];
for kks=ks
xstring(repf(k,kks),repi(k,kks),msprintf("%-0.3g",frq(kf,kks)),0);
e=gce();e.font_foreground=k;
L=[e L];
if symmetry&(abs(repi(k,kks))>mxy/20) then //not to overlap labels
xstring(repf(k,kks),-repi(k,kks),msprintf("%-0.3g",-frq(kf,kks)),0);
e=gce();e.font_foreground=k;
L=[e L];
end
end
L=glue(L);
A=[];
if size(ks,"*")>1 then
dr=repf(k,ks(1:last)+1)-repf(k,ks(1:last));
di=repi(k,ks(1:last)+1)-repi(k,ks(1:last));
dd=1500*sqrt((dr/dx).^2+(di/dy).^2);
dr=dr./dd;
di=di./dd;
// we should use xarrows or xsegs here.
// However their displayed arrow size depends
// on the data bounds and we want to avoid this
if symmetry then
xx=[repf(k,ks(1:last)) repf(k,ks(last:-1:1))+dr($:-1:1) ;
repf(k,ks(1:last))+dr repf(k,ks(last:-1:1))]
yy=[repi(k,ks(1:last)) -repi(k,ks(last:-1:1))-di($:-1:1) ;
repi(k,ks(1:last))+di -repi(k,ks(last:-1:1))]
else
xx=[repf(k,ks(1:last)) ;
repf(k,ks(1:last))+dr]
yy=[repi(k,ks(1:last));
repi(k,ks(1:last))+di]
end
xpolys(xx,yy)
//xarrows([repf(k,ks(1:last));repf(k,ks(1:last))+dr],..
// [repi(k,ks(1:last));repi(k,ks(1:last))+di],1.5)
A=gce();
A.children.arrow_size_factor = 1.5;
A.children.polyline_style = 4;
A.children.foreground=k;
end
kf=kf+ilf;
glue([Curves(k) glue([L A])]);
end;
if comments<>[] then
legend(Curves, comments);
end
fig.immediate_drawing=immediate_drawing;
endfunction
|