1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2010 - INRIA - Serge STEER
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function nicholschart(modules,args,colors)
[lhs,rhs]=argn(0);
l10=log(10);
ratio=%pi/180;
fig=gcf();
immediate_drawing=fig.immediate_drawing;
fig.immediate_drawing="off";
ax=gca();
old_data_bounds = ax.data_bounds;
nc=size(ax.children,"*")
if nc==0 then
ax.data_bounds=[-360,-40;0,40];
ax.axes_visible="on";
ax.box="on";
ax.tight_limits="on"
ax.title.text=_("Amplitude and phase contours of y/(1+y)")
ax.x_label.text=_("phase(y) (degree)");
ax.y_label.text=_("magnitude(y) (dB)");
else
ax.data_bounds(2,2)=max( ax.data_bounds(2,2),40)
end
ax.clip_state="clipgrf"
phi_min=ax.data_bounds(1,1)
phi_max=ax.data_bounds(2,1)
mod_min=ax.data_bounds(1,2)
mod_max=ax.data_bounds(2,2)
defaultArgs = [1 2 5 10 20 30 50 70 90 120 140 160 180];
defaultModules=[mod_min:20:-35 -30 -25 -20 -15 -12 -9 -6 -3 -2 -1 -0.5 -0.25 -0.1 0 0.1 0.25 0.5 1 2.3 4 6 12];
if exists("modules","local") == 0 | modules == [] then
modules=defaultModules
else
if type(modules)<>1|~isreal(modules) then
error(msprintf("%s: Wrong type for imput argument ""%s"": real floating point array expected\n"),"nicholschart","modules");
end
modules=matrix(modules,1,-1)
end
if exists("args","local")==0 | args == [] then
args=defaultArgs
else
if type(args)<>1|~isreal(args) then
error(msprintf("%s: Wrong type for imput argument ""%s"": real floating point array expected\n"),"nicholschart","args");
end
args=matrix(args,1,-1)
end
//
if exists("colors","local")==0 | colors == [] then
colors=[4 12];
else
if type(colors)<>1|~isreal(colors) then
error(msprintf("%s: Wrong type for imput argument ""%s"": real floating point array expected\n"),"hallchart","colors");
end
if size(colors,"*")==1 then
colors=colors*ones(1,2)
end
end
// convert args to radian and insure negative
args = -abs(args) * ratio;
//initialize handles array for chart entities
chart_handles=[]
// Replication bounds
k1=floor(phi_min/180)
k2=ceil(phi_max/180)
//isogain curves: y as fixed gain and varying phase
//-------------------------------------------------
if modules<>[] then
w=[linspace(-%pi,-0.1,100) linspace(-0.1,0,80) ]
nw=size(w,"*")
for i = 1:prod(size(modules)),
att=modules(i);
y=10^(att/20)*exp(%i*w);
y(y==1)=[];//remove singular point if any
rf=y./(1-y);
[module, phi]=dbphi(rf)
//use symetry and period to extend the curve on [k1*180 k2*180]
p=[];m=[];
S=[];cut=[]
for k=k1:k2-1
if pmodulo(k,2)==0 then
p=[p cut k*180-phi($:-1:1)]
m=[m cut module($:-1:1)]
if att>0 then
str=msprintf("%.2gdB",att)
r=xstringl(0,0,str)
xstring(k*180-phi($)-r(3)/2,module($),str,0,0),
e=gce();
e.font_foreground=colors(1)
S=[e S]
elseif att==0 then
l=find(module>mod_max-r(4),1)
if l<>[] then
xstring(k*180-phi(l-1),module(l-1),"0dB",0,0),
e=gce();
e.font_foreground=colors(1)
S=[e S]
end
end
else
p=[p cut ((k+1)*180)+phi]
m=[m cut module]
if att<0 then
str=msprintf("%.2gdB",att)
r=xstringl(0,0,str)
xstring(p($)-r(3),m($),str,0,0),
e=gce();
e.font_foreground=colors(1)
S=[e S]
end
end
cut=%nan
end
xpoly(p,m)
e=gce();
e.foreground=colors(1),
e.line_style=7;
e.display_function = "formatNicholsGainTip";
e.display_function_data = att;
if size(S,"*")>1 then S=glue(S),end
chart_handles=[glue([S,e]),chart_handles];
end;
end
//isophase curves: y as fixed phase and varying gain
//-------------------------------------------------
if args<>[] then
eps=10*%eps;
for teta=args,
//w = teta produce a 0 gain and consequently a singularity in module
if teta < -%pi/2 then
last=teta-eps,
else
last=teta+eps,
end;
//use logarithmic discretization to have more mesh points near low modules
w=real(logspace(log10(-last),log10(170*ratio),150))
w=-w($:-1:1)
n=prod(size(w));
module=real(20*log((sin(w)*cos(teta)/sin(teta)-cos(w)))/l10)
w=w/ratio
//use symetry and period to extend the curve on [k1*180 k2*180]
p=[];m=[];
for k=k1:k2-1
if pmodulo(k,2)==0 then
p=[p %nan k*180-w($:-1:1)]
m=[m %nan module($:-1:1)]
else
p=[p %nan ((k+1)*180)+w]
m=[m %nan module]
end
end
xpoly(p,m)
e=gce();
e.foreground=colors(2);
e.line_style=7;
e.display_function = "formatNicholsPhaseTip";
e.display_function_data = teta * 180 / %pi;
chart_handles=[e chart_handles]
end;
end
chart_handles=glue(chart_handles)
//reorder axes children to make chart drawn before the black curves if any
for k=1:nc
swap_handles(ax.children(k),ax.children(k+1))
end
fig.immediate_drawing=immediate_drawing;
// reset data_bounds
if rhs == 0 then
ax.data_bounds=[-360,-40;0,40];
else
ax.data_bounds = old_data_bounds;
end
endfunction
|