1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2010 - INRIA - Serge STEER
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function evans(n,d,kmax)
// Seuil maxi et mini (relatifs) de discretisation en espace
// Copyright INRIA
smax=0.002;smin=smax/3;
nptmax=2000 //nbre maxi de pt de discretisation en k
//Check calling sequence
[lhs,rhs]=argn(0)
if rhs <= 0 then // demonstration
n=real(poly([0.1-%i 0.1+%i,-10],"s"));
d=real(poly([-1 -2 -%i %i],"s"));
evans(n,d,80);
return
end
select typeof(n)
case "polynomial" then
if rhs==2 then kmax=0,end
case "rational" then
if rhs==2 then kmax=d,else kmax=0,end
[n,d]=n(2:3)
case "state-space" then
if rhs==2 then kmax=d,else kmax=0,end
n=ss2tf(n);
[n,d]=n(2:3);n=clean(n);d=clean(d);
else
error(msprintf(_("%s: Wrong type for input argument #%d: A linear dynamical system or a polynomial expected.\n"),"evans",1));
end
if prod(size(n))<>1 then
error(msprintf(_("%s: Wrong value for input argument #%d: Single input, single output system expected.\n"),"evans",1));
end
if degree(n)==0°ree(d)==0 then
error(msprintf(_("%s: The given system has no poles and no zeros.\n"),"evans"));
end
if kmax<=0 then
nm=min([degree(n),degree(d)])
fact=norm(coeff(d),2)/norm(coeff(n),2)
kmax=round(500*fact),
end
//
//Compute the discretization for "k" and the associated roots
nroots=roots(n);racines=roots(d);
if nroots==[] then
nrm=max([norm(racines,1),norm(roots(d+kmax*n),1)])
else
nrm=max([norm(racines,1),norm(nroots,1),norm(roots(d+kmax*n),1)])
end
md=degree(d)
//
ord=1:md;kk=0;nr=1;k=0;pas=0.99;fin="no";
klim=gsort(krac2(rlist(n,d,"c")),"g","i")
ilim=1
while fin=="no" then
k=k+pas
r=roots(d+k*n);r=r(ord)
dist=max(abs(racines(:,nr)-r))/nrm
//
point=%f
if dist <smax then //pas correct
if k-pas<klim(ilim)& k>klim(ilim) then,
k=klim(ilim);
r=roots(d+k*n);r=r(ord)
end
if k>klim(ilim) then ilim=min(ilim+1,size(klim,"*"));end
point=%t
else //Too big step or incorrect root order
// look for a root order that minimize the distance
ix=1:md
ord1=[]
for ky=1:md
yy=r(ky)
mn=10*dist*nrm
for kx=1:md
if ix(kx)>0 then
if abs(yy-racines(kx,nr)) < mn then
mn=abs(yy-racines(kx,nr))
kmn=kx
end
end
end
ix(kmn)=0
ord1=[ord1 kmn]
end
r(ord1)=r
dist=max(abs(racines(:,nr)-r))/nrm
if dist <smax then
point=%t,
ord(ord1)=ord
else
k=k-pas,pas=pas/2.5
end
end
if dist<smin then
//KToo small step
pas=2*pas;
end
if point then
racines=[racines,r];kk=[kk,k];nr=nr+1
if k>kmax then fin="kmax",end
if nr>nptmax then fin="nptmax",end
end
end
//draw the axis
x1 =[nroots;matrix(racines,md*nr,1)];
xmin=min(real(x1));xmax=max(real(x1))
ymin=min(imag(x1));ymax=max(imag(x1))
dx=abs(xmax-xmin)*0.05
dy=abs(ymax-ymin)*0.05
if dx<1d-10, dx=0.01,end
if dy<1d-10, dy=0.01,end
legs=[],lstyle=[];lhandle=[]
rect=[xmin-dx;ymin-dy;xmax+dx;ymax+dy];
f=gcf();
immediate_drawing= f.immediate_drawing;
f.immediate_drawing = "off";
a=gca();
if a.children==[]
a.data_bounds=[rect(1) rect(2);rect(3) rect(4)];
a.axes_visible="on";
a.title.text=_("Evans root locus");
a.x_label.text=_("Real axis");
a.y_label.text=_("Imaginary axis");
axes.clip_state = "clipgrf";
else //enlarge the boundaries
a.data_bounds=[min(a.data_bounds(1,:),[rect(1) rect(2)]);
max(a.data_bounds(2,:),[rect(3) rect(4)])];
end
if nroots<>[] then
xpoly(real(nroots),imag(nroots))
e=gce();e.line_mode="off";e.mark_mode="on";
e.mark_size_unit="point";e.mark_size=7;e.mark_style=5;
legs=[legs; _("open loop zeroes")]
lhandle=[lhandle; e];
end
if racines<>[] then
xpoly(real(racines(:,1)),imag(racines(:,1)))
e=gce();e.line_mode="off";e.mark_mode="on";
e.mark_size_unit="point";e.mark_size=7;e.mark_style=2;
legs=[legs;_("open loop poles")]
lhandle=[lhandle; e];
end
dx=max(abs(xmax-xmin),abs(ymax-ymin));
//plot the zeros locations
//computes and draw the asymptotic lines
m=degree(n);q=md-m
if q>0 then
la=0:q-1;
so=(sum(racines(:,1))-sum(nroots))/q
i1=real(so);i2=imag(so);
if prod(size(la))<>1 then
ang1=%pi/q*(ones(la)+2*la)
x1=dx*cos(ang1),y1=dx*sin(ang1)
else
x1=0,y1=0,
end
if md==2,
if coeff(d,md)<0 then
x1=0*ones(2),y1=0*ones(2)
end,
end;
if max(k)>0 then
xpoly(i1,i2);
e=gce();
legs=[legs;_("asymptotic directions")]
lhandle=[lhandle; e];
a.clip_state = "clipgrf";
for i=1:q,xsegs([i1,x1(i)+i1],[i2,y1(i)+i2]),end,
// a.clip_state = "off";
end
end;
[n1,n2]=size(racines);
// assign the colors for each root locus
cmap=f.color_map;cols=1:size(cmap,1);
if a.background==-2 then
cols(and(cmap==1,2))=[]; //remove white
elseif a.background==-1 then
cols(and(cmap==0,2))=[]; //remove black
else
cols(a.background)=[];
end
cols=cols(modulo(0:n1-1,size(cols,"*"))+1);
//draw the root locus
xpolys(real(racines)',imag(racines)',cols)
//set info for datatips
E=gce();
for k=1:size(E.children,"*")
E.children(k).display_function = "formatEvansTip";
E.children(k).display_function_data = kk;
end
c=captions(lhandle,legs($:-1:1),"in_upper_right")
c.background=a.background;
f.immediate_drawing = immediate_drawing;
if fin=="nptmax" then
warning(msprintf(gettext("%s: Curve truncated to the first %d discretization points.\n"),"evans",nptmax))
end
endfunction
function str=formatEvansTip(curve)
//this function is called by the datatip mechanism to format the tip
//string for the evans root loci curves
ud = curve.parent.display_function_data;
pt = curve.data(1:2);
[d,ptp,i,c]=orthProj(curve.parent.data, pt);
K=ud(i)+(ud(i+1)-ud(i))*c;
str=msprintf("r: %.4g %+.4g i\nK: %.4g", pt,K);
endfunction
|