summaryrefslogtreecommitdiff
path: root/modules/cacsd/macros/csim.sci
blob: d14fe4e3e029ed69de586147176ba1939e4c9c43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA -
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt


function [y,x]=csim(u,dt,sl,x0,tol)
    //Syntax:
    //  [y [,x]]=csim(u,dt,sl,[x0])
    // simulation of the controlled linear system sl.
    // sl is assumed to be a continuous-time system.
    // u is the control and x0 the initial state.
    //
    //u can be:
    // - a function
    //    [inputs]=u(t)
    // - a list
    //    list(ut,parameter1,....,parametern) such that
    //    inputs=ut(t,parameter1,....,parametern)
    // - the character string 'impuls' for impulse response calculation
    //    (here sl is assumed SISO without direct feedthrough and x0=0)
    // - the character string 'step' for step response calculation
    //    (here sl is assumed SISO without direct feedthrough and x0=0)
    //dt is a vector of instants with dt(1) = initial time
    //                   that is:           x0=x
    //                                          dt(1)
    //
    //y matrix such that:
    //  y=[y       y  ...  y     ]
    //      dt(1)   dt(2)   dt(n)
    //x matrix such that:
    //  x=[x       x  ...  x     ]
    //      dt(1)   dt(2)   dt(n)
    //
    //See also:
    // dsimul flts ltitr rtitr ode impl
    //!

    [lhs,rhs]=argn(0)
    //
    if rhs<3 then error(39),end
    sltyp=typeof(sl)
    if and(sltyp<>["state-space" "rational"]) then
        error(msprintf(_("%s: Wrong type for input argument #%d: %s data structure expected.\n"),"csim",3,"syslin"))
    end
    if sltyp=="rational" then sl=tf2ss(sl),end
    if sl.dt<>"c" then
        warning(msprintf(gettext("%s: Input argument #%d is assumed continuous time.\n"),"csim",1));
    end
    //
    [a,b,c,d]=sl(2:5);
    if degree(d)>0 then
        error(msprintf(gettext("%s: Wrong type for input argument #%d: A proper system expected\n"),"csim",1));
    end
    [ma,mb]=size(b);
    //
    imp=0;step=0
    text="if t==0 then y=0, else y=1,end"
    //
    select type(u)
    case 10 then //input given by its type (step or impuls)
        if mb<>1 then
            error(msprintf(gettext("%s: Wrong type for input argument #%d: A SIMO expected.\n"),"csim",1));
        end;
        if part(u,1)=="i" then
            //impulse response
            imp=1;
            dt(dt==0)=%eps^2;
        elseif part(u,1)=="s" then
            step=1
            if norm(d,1)<>0 then
                dt(dt==0)=%eps^2;
            end;
        else
            error(msprintf(gettext("%s: Wrong value for input argument #%d: Must be in the set {%s}.\n"),"csim",1,"""step"",""impuls"""))
        end;
        deff("[y]=u(t)",text);
    case 11 then //input given by a function of time
        comp(u)
    case 13 then //input given by a function of time
    case 1 then //input given by a vector of data
        [mbu,ntu]=size(u);
        if mbu<>mb | ntu<>size(dt,"*") then
            error(msprintf(gettext("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),"csim",1,2))
        end
    case 15 then  //input given by a list: function of time with parameters
        uu=u(1),
        if type(uu)==11 then
            comp(uu),
            u(1)=uu,
        end
    else error(44,2)
    end;
    //
    if rhs==3 then x0=sl(6),end
    if imp==1|step==1 then x0=0*x0,end
    nt=size(dt,"*");x=0*ones(ma,nt);
    [a,v]=balanc(a);
    v1=v;//save for backward transformation

    //apply transformation u without matrix inversion
    [k,l]=find(v<>0) //get the permutation

    //apply right transformation
    v=v(k,l);//diagonal matrix
    c=c(:,k)*v;
    //apply left transformation
    v=diag(1 ./diag(v));b=v*b(k,:);x0=v*x0(k)

    [a,v2,bs]=bdiag(a,1);b=v2\b;c=c*v2;x0=v2\x0;
    //form the differential equation function
    if type(u)==1 then
        //form a continuous time interpolation of the given data
        ut=u;
        if min(size(ut))==1 then ut=matrix(ut,1,-1),end
        deff("[y]=u(t)",["ind=find(dt<=t);nn=ind($)"
        "if (t==dt(nn)|nn==nt) then "
        "   y=ut(:,nn)"
        "else "
        "   y=ut(:,nn)+(t-dt(nn))/(dt(nn+1)-dt(nn))*(ut(:,nn+1)-ut(:,nn))"
        "end"]);
        deff("[ydot]=%sim2(%tt,%y)","ydot=ak*%y+bk*u(%tt)");
    elseif type(u)<>15 then
        deff("[ydot]=%sim2(%tt,%y)","ydot=ak*%y+bk*u(%tt)");
        ut=ones(mb,nt);for k=1:nt, ut(:,k)=u(dt(k)),end
    else
        %sim2=u
        tx=" ";for l=2:size(u), tx=tx+",%"+string(l-1);end;
        deff("[ydot]=sk(%tt,%y,u"+tx+")","ydot=ak*%y+bk*u(%tt"+tx+")");
        %sim2(0)=sk;u=u(1)
        deff("[ut]=uu(t)",...
        ["["+part(tx,3:length(tx))+"]=%sim2(3:"+string(size(%sim2))+")";
        "ut=ones(mb,nt);for k=1:nt, ut(:,k)=u(t(k)"+tx+"),end"])
        ut=uu(dt);
    end;

    //simulation
    k=1;
    for n=bs',
        kk=k:k+n-1;
        ak=a(kk,kk);
        bk=b(kk,:);
        nrmu=max([norm(bk*ut,1),norm(x0(kk))]);
        if nrmu > 0 then
            if rhs<5 then
                atol=1.d-12*nrmu;rtol=atol/100;
            else
                atol=tol(1);rtol=tol(2);
            end
            xkk=ode("adams",x0(kk),0,dt,rtol,atol,%sim2);
            if size(xkk,2)<>size(x,2) then
                error(msprintf(_("%s: Simulation failed before final time is reached.\n"),"csim"))
            end
            x(kk,:)=xkk;
            if imp==1 then x(kk,:)=ak*x(kk,:)+bk*ut,end
        end;
        k=k+n
    end;
    y=c*x+d*ut
    if lhs==2 then x=v1*v2*x,end
endfunction