1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA -
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function [frq, bnds, splitf] = calfrq(h, fmin, fmax)
//!
eps = 1.d-14 //minimum absolute lower frequency
k = 0.001 // Minimum relative prediction error in the nyquist plan
epss = 0.002 // minimum frequency distance with a singularity
nptmax = 5000 //maximum number of discretization points
tol = 0.01 // Tolerance for testing pure imaginary numbers
// Check inputs
// ------------
if and(typeof(h) <> ["state-space" "rational"])
error(msprintf(gettext("%s: Wrong type for input argument #%d: Linear state space or a transfer function expected.\n"), "calfrq", 1))
end
if typeof(h) == "state-space" then
h = ss2tf(h)
end
[m, n] = size(h.num)
dom = h("dt")
select dom
case "d" then
dom = 1
case [] then
error(96, 1)
case 0 then
error(96, 1)
end;
if type(dom) == 1 then
nyq_frq = 1/2/dom;
if fmax > nyq_frq then
warning(msprintf(gettext("%s: Frequencies beyond Nyquist frequency are ignored.\n"), "calfrq"));
fmax = min(fmax, nyq_frq)
end
if fmin < -nyq_frq then
warning(msprintf(gettext("%s: Negative frequencies below Nyquist frequency are ignored.\n"), "calfrq"));
fmin = max(fmin, -nyq_frq)
end
end
// Use symmetry to reduce the range
// --------------------------------
if fmin < 0 & fmax >= 0 then
[frq, bnds, splitf] = calfrq(h, eps, -fmin)
ns1 = size(splitf, "*")-1;
nsp = size(frq, "*");
bnds = [bnds(1), bnds(2), -bnds(4), -bnds(3)];
if fmax > eps then
if fmax == -fmin then
splitf = [1, (nsp+2)*ones(1,ns1)-splitf($:-1:2), nsp*ones(ns1)+splitf(2:$)];
bnds = [bnds(1), bnds(2), min(bnds(3), -bnds(3)), max(bnds(4), -bnds(4))];
frq = [-frq($:-1:1), frq]
else
[frq2, bnds2, splitf2] = calfrq(h, eps, fmax);
ns2 = size(splitf2,"*")-1
splitf = [1, (nsp+2)*ones(1,ns1)-splitf($:-1:2), nsp*ones(ns2)+splitf2(2:$)];
bnds = [min(bnds(1), bnds2(1)), max(bnds(2), bnds2(2)),...
min(bnds(3), bnds2(3)), max(bnds(4), bnds2(4))];
frq = [-frq($:-1:1), frq2]
end
return
else
frq = -frq($:-1:1);
nsp = size(frq, "*");
splitf = [1, (nsp+2)*ones(1, ns1)-splitf($:-1:2)]
bnds = bnds;
return;
end
elseif fmin < 0 & fmax <= 0 then
[frq, bnds, splitf] = calfrq(h, -fmax, -fmin)
ns1 = size(splitf, "*")-1;
frq = -frq($:-1:1);
nsp = size(frq, "*");
splitf = [1, (nsp+2)*ones(1, ns1)-splitf($:-1:2)]
bnds = [bnds(1), bnds(2), -bnds(4), -bnds(3)];
return;
elseif fmin >= fmax then
error(msprintf(gettext("%s: Wrong value for input arguments #%d and #%d: %s < %s expected.\n"),..
"calfrq", 2, 3, "fmin", "fmax"));
end
// Compute dicretisation over a given range
// ----------------------------------------
splitf = []
if fmin == 0 then fmin = min(1d-14, fmax/10);end
//
denh = h("den"); numh = h("num")
l10 = log(10)
// Locate singularities to avoid them
// ----------------------------------
if dom == "c" then
c = 2*%pi;
// selection function for singularities in the frequency range
deff("f=%sel(r, fmin, fmax, tol)",["f = [],";
"if prod(size(r)) == 0 then return, end";
"f = imag(r(find((abs(real(r))<=tol*abs(r))&(imag(r)>=0))))";
"if f <> [] then f = f(find((f>fmin-tol)&(f<fmax+tol))); end"]);
else
c = 2*%pi*dom
// selection function for singularities in the frequency range
deff("[f] = %sel(r, fmin, fmax, dom, tol)",["f = [],";
"if prod(size(r)) == 0 then return, end";
"f = r(find( ((abs(abs(r)-ones(r)))<=tol)&(imag(r)>=0)))";
"if f <> [] then ";
" f = atan(imag(f), real(f)); nf = prod(size(f))";
" for k=1:nf,";
" kk = int((fmax-f(k))/(2*%pi))+1;";
" f = [f; f(1:nf)+2*%pi*kk*ones(nf, 1)];";
" end;"
" f = f(find((f>fmin-tol)&(f<fmax+tol)))";
"end"]);
end
sing = [];zers = [];
fmin = c*fmin, fmax = c*fmax;
for i=1:m
sing = [sing; %sel(roots(denh(i), "e"), fmin, fmax, tol)];
end
pp = gsort(sing', "g", "i"); npp = size(pp, "*");//'
// singularities just on the left of the range
kinf = find(pp<fmin)
if kinf <> [] then
fmin = fmin+tol
pp(kinf) = []
end
// singularities just on the right of the range
ksup = find(pp>=fmax)
if ksup <> [] then
fmax = fmax-tol
pp(ksup) = []
end
// check for nearly multiple singularities
if pp <> [] then
dpp = pp(2:$)-pp(1:$-1)
keq = find(abs(dpp)<2*epss)
if keq <> [] then pp(keq) = [], end
end
if pp <> [] then
frqs = [fmin real(matrix([(1-epss)*pp; (1+epss)*pp], 2*size(pp, "*"), 1)') fmax]
//'
else
frqs = [fmin fmax]
end
nfrq = size(frqs, "*");
// Evaluate bounds of nyquist plot
//-------------------------------
xt = []; Pas = []
for i=1:2:nfrq-1
w = logspace(log(frqs(i))/log(10), log(frqs(i+1))/log(10), 100);
xt = [xt, w]
Pas = [Pas w(2)-w(1)]
end
if dom == "c" then
rf = freq(h("num"), h("den"), %i*xt);
else
rf = freq(h("num"), h("den"), exp(%i*xt));
end
//
xmin = min(real(rf)); xmax = max(real(rf));
ymin = min(imag(rf)); ymax = max(imag(rf));
bnds = [xmin xmax ymin ymax];
dx = max([xmax-xmin, 1]); dy = max([ymax-ymin, 1]);
// Compute discretization with a step adaptation method
// ----------------------------------------------------
frq = [];
i = 1;
nptr = nptmax; // number of unused discretization points
l10last = log10(frqs($));
while i<nfrq
f0 = frqs(i); fmax = frqs(i+1);
while f0==fmax do
i = i+2;
f = frqs(i); fmax = frqs(i+1);
end
frq = [frq, f0];
pas = Pas(floor(i/2)+1)
splitf = [splitf size(frq, "*")];
f = min(f0+pas, fmax);
if dom == "c" then // Continuous case
while f0<fmax
rf0 = freq(h("num"), h("den"), (%i*f0));
rfc = freq(h("num"), h("den"), %i*f);
// compute prediction error
epsd = pas/100; // epsd = 1.d-8
rfd = (freq(h("num"), h("den"), %i*(f0+epsd))-rf0)/(epsd);
rfp = rf0+pas*rfd;
e = max([abs(imag(rfp-rfc))/dy; abs(real(rfp-rfc))/dx])
if e > k then rf0 = freq(h("num"), h("den"), (%i*f0));
rfc = freq(h("num"), h("den"), %i*f);
// compute prediction error
epsd = pas/100; // epsd = 1.d-8
rfd = (freq(h("num"), h("den"), %i*(f0+epsd))-rf0)/(epsd);
rfp = rf0+pas*rfd;
e = max([abs(imag(rfp-rfc))/dy; abs(real(rfp-rfc))/dx])
// compute minimum frequency logarithmic step to ensure a maximum
//of nptmax points to discretize
pasmin = f0*(10^((l10last-log10(f0))/(nptr+1))-1)
pas = pas/2
if pas < pasmin then
pas = pasmin
frq = [frq, f]; nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax)
else
f = min(f0+pas, fmax)
end
elseif e < k/2 then
pas = 2*pas
frq = [frq, f]; nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax),
else
frq = [frq, f];nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax),
end
end
else // Discrete case
pas = pas/dom
while f0<fmax
rf0 = freq(h("num"), h("den"), exp(%i*f0))
rfd = dom*(freq(h("num"), h("den"), exp(%i*(f0+pas/100)))-rf0)/(pas/100);
rfp = rf0+pas*rfd
rfc = freq(h("num"), h("den"), exp(%i*f));
e = max([abs(imag(rfp-rfc))/dy; abs(real(rfp-rfc))/dx])
if e > k then
pasmin = f0*(10^((l10last-log10(f0))/(nptr+1))-1)
pas = pas/2
if pas < pasmin then
pas = pasmin
frq = [frq, f]; nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax)
else
f = min(f0+pas, fmax)
end
elseif e < k/2 then
pas = 2*pas
frq = [frq, f]; nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax),
else
frq = [frq, f]; nptr = max([1, nptr-1])
f0 = f; f = min(f0+pas, fmax),
end
end
end
i = i+2
end
frq(size(frq, "*")) = fmax
frq = frq/c;
endfunction
|