1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 1998-2010 - INRIA - Serge Steer
// Copyright (C) 2010 - DIGITEO - Yann COLLETTE
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
function black(varargin)
//Black's diagram (Nichols chart) for a linear system sl.
//sl can be a continuous-time, discrete-time or sampled SIMO system
//Syntax:
//
// black( sl,fmin,fmax [,pas] [,comments] )
// black(frq,db,phi [,comments])
// black(frq, repf [,comments])
//
// sl : SIMO linear system (see syslin). In case of multi-output
// system the outputs are plotted with differents symbols.
//
// fmin : minimal frequency (in Hz).
// fmax : maximal frequency (in Hz).
// pas : logarithmic discretization step. (see calfrq for the
// choice of default value).
// comments : character strings to comment the curves.
//
// frq : (row)-vector of frequencies (in Hz) or (SIMO case) matrix
// of frequencies.
// db : matrix of modulus (in Db). One row for each response.
// phi : matrix of phases (in degrees). One row for each response.
// repf : matrix of complex numbers. One row for each response.
//To plot the grid of iso-gain and iso-phase of y/(1+y) use abaque()
//%Example
// s=poly(0,"s")
// h=syslin("c",(s**2+2*0.9*10*s+100)/(s**2+2*0.3*10.1*s+102.01))
// nicholschart();
// black(h,0.01,100,"(s**2+2*0.9*10*s+100)/(s**2+2*0.3*10.1*s+102.01)")
// //
// h1=h*syslin("c",(s**2+2*0.1*15.1*s+228.01)/(s**2+2*0.9*15*s+225))
// black([h1;h],0.01,100,["h1";"h"])
//See also:
// bode nyquist nicholschart freq repfreq
//!
rhs=size(varargin)
if type(varargin($))==10 then
comments=varargin($),rhs=rhs-1;
else
comments=[];
end
fname="black";//for error messages
fmax=[]
if or(typeof(varargin(1))==["state-space" "rational"]) then
//sys,fmin,fmax [,pas] or sys,frq
refdim=1 //for error message
if rhs==1 then
[frq,repf]=repfreq(varargin(1),1d-3,1d3)
elseif rhs==2 then //sys,frq
if size(varargin(2),2)<2 then
error(msprintf(_("%s: Wrong size for input argument #%d: A row vector with length>%d expected.\n"),..
fname,2,1))
end
[frq,repf]=repfreq(varargin(1:rhs))
elseif or(rhs==(3:4)) then //sys,fmin,fmax [,pas]
[frq,repf]=repfreq(varargin(1:rhs))
else
error(msprintf(_("%s: Wrong number of input arguments: %d to %d expected.\n"),fname,1,5))
end
[phi,d]=phasemag(repf)
if rhs>=3 then fmax=varargin(3),end
elseif type(varargin(1))==1 then
//frq,db,phi [,comments] or frq, repf [,comments]
refdim=2
select rhs
case 2 then //frq,repf
frq=varargin(1);
if size(frq,2)<2 then
error(msprintf(_("%s: Wrong size for input argument #%d: A row vector with length>%d expected.\n"),..
fname,1,1))
end
if size(frq,2)<>size(varargin(2),2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),..
fname,1,2))
end
[phi,d]=phasemag(varargin(2))
case 3 then //frq,db,phi
[frq,d,phi]=varargin(1:rhs)
if size(frq,2)<>size(d,2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),..
fname,1,2))
end
if size(frq,2)<>size(phi,2) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same column dimensions expected.\n"),..
fname,1,3))
end
else
error(msprintf(_("%s: Wrong number of input arguments: %d to %d expected.\n"),fname,2,4))
end
else
error(msprintf(_("%s: Wrong type for input argument #%d: Linear dynamical system or row vector of floats expected.\n"),fname,1))
end;
if size(frq,1)==1 then
ilf=0
else
ilf=1
end
[mn,n]=size(phi);
if and(size(comments,"*")<>[0 mn]) then
error(msprintf(_("%s: Incompatible input arguments #%d and #%d: Same number of elements expected.\n"),...
fname,refdim,rhs+1))
end
//
xmn=floor(min(phi)/90)*90
xmx=ceil(max(phi)/90)*90
ymn=min(d)
ymx=max(d)
kf=1
phi1=phi+5*ones(phi);
kk=1;p0=[phi(:,kk) d(:,kk)];ks=1;Dst=0;
dx=max(%eps,xmx-xmn);
dy=max(%eps,ymx-ymn);
dx2=dx.^2;dy2=dy.^2
while kk<n
kk=kk+1
Dst=Dst+min(sqrt(((phi(:,kk-1)-phi(:,kk)).^2)/dx2+((d(:,kk-1)-d(:,kk)).^2)/dy2))
if Dst>0.2 then
if min(abs(frq(:,ks(prod(size(ks))))-frq(:,kk))./frq(:,kk))>0.2 then
ks=[ks kk]
Dst=0
end
end
end
kf=1
fig=gcf();
immediate_drawing=fig.immediate_drawing;
fig.immediate_drawing="off";
ax=gca();
if size(ax.children,"*")==0 then
ax.data_bounds=[xmn ymn;xmx ymx];
ax.x_label.text=_("Phase (deg)");
ax.y_label.text=_("Magnitude (dB)")
else
ax.data_bounds=[min([xmn ymn],ax.data_bounds(1,:));
max([xmx ymx],ax.data_bounds(2,:))];
end
ax.axes_visible="on";
ax.clip_state="clipgrf";
r=xstringl(0,0,"m");r=r(3)
E=[]
if ks($)<size(phi,2) then last=$;else last=$-1;end
for k=1:mn
e2=[]
if size(ks,"*") >1 then
d_phi=phi(k,ks(1:last)+1)-phi(k,ks(1:last));
d_d=d(k,ks(1:last)+1)-d(k,ks(1:last));
dd=400*sqrt((d_phi/dx).^2+(d_d/dy).^2);
if dd>0 then
// we should use xarrows or xsegs here.
// However their displayed arrow size depends
// on the data bounds and we want to avoid this.
xpolys([phi(k,ks(1:last));phi(k,ks(1:last))+d_phi./dd],..
[d(k,ks(1:last));d(k,ks(1:last))+d_d./dd]);
ea=gce();
ea.children.foreground=k;
ea.children.polyline_style = 4;
ea.children.arrow_size_factor = 1.5;
//xarrows([phi(k,ks(1:last));phi(k,ks(1:last))+d_phi./dd],..
// [d(k,ks(1:last));d(k,ks(1:last))+d_d./dd],60)
//ea=gce();ea.segs_color=k*ones(dd);
//add a frequency label near each arrow
el=[];
for l=ks
xstring(phi(k,l)+r,d(k,l),msprintf("%-5.2g",frq(kf,l)))
e=gce()
e.font_foreground=k;
el=[e,el]
end
e2=glue([el ea])
end
end
xpoly(phi(k,:),d(k,:));e1=gce()
e1.foreground=k;
e1.display_function = "formatBlackTip";
e1.display_function_data = frq(kf,:);
// glue entities relative to a single black curve
E=[E glue([e2 e1])]
kf=kf+ilf
end
// 2.3 db curve
mbf=2.3;
lmda=exp(log(10)/20*mbf);
r=lmda/(lmda**2-1);
npts=100;
crcl=exp(%i*(-%pi:(2*%pi/npts):%pi));
lgmt=log(-r*crcl+r*lmda*ones(crcl));
xpoly([180*(imag(lgmt)/%pi-ones(lgmt))],[(20/log(10)*real(lgmt))])
e=gce();e.foreground=2;e.line_style=3;
if comments<>[] then
c=[];
for k=1:mn
c=[c, E(k).children(1)];
end
legend([c e]',[comments(:); "2.3"+_("dB")])
end
fig.immediate_drawing=immediate_drawing;
endfunction
|