summaryrefslogtreecommitdiff
path: root/modules/cacsd/help/en_US/trzeros.xml
blob: b3cb4a41c6c7730d443f66ac522cd582cd582e8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
<?xml version="1.0" encoding="UTF-8"?>
<!--
 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 * Copyright (C) INRIA - 
 * 
 * This file must be used under the terms of the CeCILL.
 * This source file is licensed as described in the file COPYING, which
 * you should have received as part of this distribution.  The terms
 * are also available at    
 * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
 *
 -->
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="trzeros">
    <refnamediv>
        <refname>trzeros</refname>
        <refpurpose>transmission zeros and normal rank</refpurpose>
    </refnamediv>
    <refsynopsisdiv>
        <title>Calling Sequence</title>
        <synopsis>[tr]=trzeros(Sl)
            [nt,dt,rk]=trzeros(Sl)
        </synopsis>
    </refsynopsisdiv>
    <refsection>
        <title>Arguments</title>
        <variablelist>
            <varlistentry>
                <term>Sl</term>
                <listitem>
                    <para>
                        linear system (<literal>syslin</literal> list)
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>nt</term>
                <listitem>
                    <para>complex vectors</para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>dt</term>
                <listitem>
                    <para>real vector</para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>rk</term>
                <listitem>
                    <para>integer (normal rank of Sl)</para>
                </listitem>
            </varlistentry>
        </variablelist>
    </refsection>
    <refsection>
        <title>Description</title>
        <para>
            Called with one output argument, <literal>trzeros(Sl)</literal> returns the 
            transmission zeros of the linear system <literal>Sl</literal>.
        </para>
        <para>
            <literal>Sl</literal> may have a polynomial (but square) <literal>D</literal> matrix.
        </para>
        <para>
            Called with 2 output arguments, <literal>trzeros</literal> returns the 
            transmission zeros of the linear system <literal>Sl</literal> as <literal>tr=nt./dt</literal>;
        </para>
        <para>
            (Note that some components of <literal>dt</literal> may be zeros)
        </para>
        <para>
            Called with 3 output arguments, <literal>rk</literal>  is the normal rank of <literal>Sl</literal>
        </para>
        <para>
            Transfer matrices are converted to state-space.
        </para>
        <para>
            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the 
            roots of its determinant.
        </para>
        <para>
            For usual state-space system <literal>trzeros</literal> uses the state-space 
            algorithm of Emami-Naeni and Van Dooren.
        </para>
        <para>
            If <literal>D</literal> is invertible the transmission zeros are the eigenvalues
            of the "<literal>A</literal> matrix" of the inverse system : <literal>A - B*inv(D)*C</literal>;
        </para>
        <para>
            If <literal>C*B</literal> is invertible the transmission zeros are the eigenvalues
            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of 
            <literal>eye(A)-B*inv(C*B)*C</literal>;
        </para>
        <para>
            For systems with a polynomial <literal>D</literal> matrix zeros are 
            calculated as the roots of the determinant of the system matrix.
        </para>
        <para>
            <warning>
                Caution: the computed zeros are not always reliable, in particular
                in case of repeated zeros.
            </warning>
        </para>
    </refsection>
    <refsection>
        <title>Examples</title>
        <programlisting role="example"><![CDATA[ 
W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
roots(det(systmat(W1)))         //roots of det(system matrix)
s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St);
St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
roots(St1(rowf,colf)), nt./dt     //By Kronecker form
 ]]></programlisting>
    </refsection>
    <refsection role="see also">
        <title>See Also</title>
        <simplelist type="inline">
            <member>
                <link linkend="gspec">gspec</link>
            </member>
            <member>
                <link linkend="kroneck">kroneck</link>
            </member>
        </simplelist>
    </refsection>
</refentry>