summaryrefslogtreecommitdiff
path: root/modules/cacsd/help/en_US/rowinout.xml
blob: 0368b52576c853be96d39836a8ff42ddfe552762 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<?xml version="1.0" encoding="UTF-8"?>
<!--
 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 * Copyright (C) INRIA - 
 * 
 * This file must be used under the terms of the CeCILL.
 * This source file is licensed as described in the file COPYING, which
 * you should have received as part of this distribution.  The terms
 * are also available at    
 * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
 *
 -->
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="rowinout">
    <refnamediv>
        <refname>rowinout</refname>
        <refpurpose>inner-outer factorization</refpurpose>
    </refnamediv>
    <refsynopsisdiv>
        <title>Calling Sequence</title>
        <synopsis>[Inn,X,Gbar]=rowinout(G)</synopsis>
    </refsynopsisdiv>
    <refsection>
        <title>Arguments</title>
        <variablelist>
            <varlistentry>
                <term>G</term>
                <listitem>
                    <para>
                        linear system (<literal>syslin</literal> list) <literal>[A,B,C,D]</literal>
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>Inn</term>
                <listitem>
                    <para>
                        inner factor (<literal>syslin</literal> list)
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>Gbar</term>
                <listitem>
                    <para>
                        outer factor (<literal>syslin</literal> list)
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>X</term>
                <listitem>
                    <para>
                        row-compressor of <literal>G</literal> (<literal>syslin</literal> list)
                    </para>
                </listitem>
            </varlistentry>
        </variablelist>
    </refsection>
    <refsection>
        <title>Description</title>
        <para>
            Inner-outer factorization (and row compression) of (<literal>l</literal>x<literal>p</literal>) <literal>G =[A,B,C,D]</literal> with <literal>l&gt;=p</literal>.
        </para>
        <para>
            <literal>G</literal> is assumed to be tall (<literal>l&gt;=p</literal>) without zero on the imaginary axis
            and with a <literal>D</literal> matrix which is full column rank.
        </para>
        <para>
            <literal>G</literal> must also be stable for having <literal>Gbar</literal> stable.
        </para>
        <para>
            <literal>G</literal> admits the following inner-outer factorization:
        </para>
        <programlisting role=""><![CDATA[ 
 G = [ Inn ] | Gbar |
             |  0   |
 ]]></programlisting>
        <para>
            where <literal>Inn</literal> is square and inner (all pass and stable) and <literal>Gbar</literal> 
            square and outer i.e:
            Gbar is square bi-proper and bi-stable (Gbar inverse is also proper 
            and stable);
        </para>
        <para>
            Note that:
        </para>
        <programlisting role=""><![CDATA[ 
      [ Gbar ]
X*G = [  -   ]
      [  0   ]
 ]]></programlisting>
        <para>
            is a row compression of <literal>G</literal> where <literal>X</literal> = <literal>Inn</literal> inverse is all-pass i.e:
        </para>
        <programlisting role=""><![CDATA[ 
 T
X (-s) X(s) = Identity
 ]]></programlisting>
        <para>
            (for the continuous time case).
        </para>
    </refsection>
    <refsection role="see also">
        <title>See Also</title>
        <simplelist type="inline">
            <member>
                <link linkend="syslin">syslin</link>
            </member>
            <member>
                <link linkend="colinout">colinout</link>
            </member>
        </simplelist>
    </refsection>
</refentry>