1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Add some comments about XML file
-->
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en_US" xml:id="nyquistfrequencybounds">
<refnamediv>
<refname>nyquistfrequencybounds</refname>
<refpurpose>Computes the frequencies for which the nyquist locus enters and leaves a given rectangle. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[fmin,fmax] = nyquistfrequencybounds(H,bounds)</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>H</term>
<listitem>
<para>
A SISO linear dynamical system.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>bounds</term>
<listitem>
<para>
A 2 by 2 array: [Rmin Imin;Rmax Imax] that defines a complex-plane rectangle.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>fmin</term>
<listitem>
<para>
a real: the lowest frequency (Hz) such that the nyquist
locus enters the given rectangle or 0 if the 0 Hz point
lies in the rectangle or [] if the locus is completely
outside the rectangle.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>fmax</term>
<listitem>
<para>
a real: the highest frequency (Hz) such that the nyquist
locus leaves the given rectangle or %inf if the %inf (hz)
point is in the rectangle or [] if the locus is completely
outside the rectangle.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title><para>
Given a C plane rectangle,
<literal>nyquistfrequencybounds</literal> Computes the lowest
frequency for which the nyquist locus enters the rectangle and
the highest frequency for which the nyquist locus leaves the
rectangle.
</para>
This function is useful for high definition zoom of a nyquist locus.
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
s=%s
num=2+9*s-9*s^2-11*s^3+0.01*s^4;
den=43*s^2+65*s^3+34*s^4+8*s^5+s^6+0.1*s^7
H=syslin('c',num,den)-1
clf;set(gcf(),'axes_size',[805,549])
subplot(221)
nyquist(H)
subplot(222)
bounds=[-2 -2;2 2]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,fmax)
title("bounds:"+sci2exp(bounds,0));
subplot(223)
bounds=[-1.3 -0.3;0 0.3]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,fmax)
title("bounds:"+sci2exp(bounds,0));
subplot(224)
bounds=[-1.1 -0.1;-0.8 0.1]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,1d8)
title("bounds:"+sci2exp(bounds,0));
]]></programlisting>
<para>
<scilab:image>
s=%s
num=2+9*s-9*s^2-11*s^3+0.01*s^4;
den=43*s^2+65*s^3+34*s^4+8*s^5+s^6+0.1*s^7
H=syslin('c',num,den)-1
clf;set(gcf(),'axes_size',[805,549])
subplot(221)
nyquist(H)
subplot(222)
bounds=[-2 -2;2 2]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,fmax)
title("bounds:"+sci2exp(bounds,0));
subplot(223)
bounds=[-1.3 -0.3;0 0.3]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,fmax)
title("bounds:"+sci2exp(bounds,0));
subplot(224)
bounds=[-1.1 -0.1;-0.8 0.1]
[fmin,fmax]=nyquistfrequencybounds(H,bounds)
nyquist(H,fmin,1d8)
title("bounds:"+sci2exp(bounds,0));
</scilab:image>
</para>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member>
<link linkend="nyquist">nyquist</link>
</member>
</simplelist>
</refsection>
</refentry>
|