summaryrefslogtreecommitdiff
path: root/modules/cacsd/help/en_US/lft.xml
blob: be7f0609138f5db0a61a6113c99d128600500c10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<?xml version="1.0" encoding="UTF-8"?>
<!--
 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 * Copyright (C) INRIA - 
 * 
 * This file must be used under the terms of the CeCILL.
 * This source file is licensed as described in the file COPYING, which
 * you should have received as part of this distribution.  The terms
 * are also available at    
 * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
 *
 -->
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="lft">
    <refnamediv>
        <refname>lft</refname>
        <refpurpose>linear fractional transformation</refpurpose>
    </refnamediv>
    <refsynopsisdiv>
        <title>Calling Sequence</title>
        <synopsis>[P1]=lft(P,K)
            [P1]=lft(P,r,K)
            [P1,r1]=lft(P,r,Ps,rs)
        </synopsis>
    </refsynopsisdiv>
    <refsection>
        <title>Arguments</title>
        <variablelist>
            <varlistentry>
                <term>P</term>
                <listitem>
                    <para>
                        linear system (<literal>syslin</literal> list), the ``augmented'' plant, implicitly partitioned into four blocks (two input ports and two output ports).
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>K</term>
                <listitem>
                    <para>
                        linear system (<literal>syslin</literal> list), the controller (possibly an ordinary gain).
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>r</term>
                <listitem>
                    <para>
                        1x2 row vector, dimension of <literal>P22</literal>
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>Ps  </term>
                <listitem>
                    <para>
                        linear system (<literal>syslin</literal> list), implicitly partitioned into four blocks (two input ports and two output ports).
                    </para>
                </listitem>
            </varlistentry>
            <varlistentry>
                <term>rs  </term>
                <listitem>
                    <para>
                        1x2 row vector, dimension of <literal>Ps22</literal>
                    </para>
                </listitem>
            </varlistentry>
        </variablelist>
    </refsection>
    <refsection>
        <title>Description</title>
        <para>
            Linear fractional transform between two standard plants
            <literal>P</literal> and <literal>Ps</literal> in state space form or in
            transfer form (<literal>syslin</literal> lists).
        </para>
        <para>
            <literal>r= size(P22) rs=size(P22s)</literal>
        </para>
        <para>
            <literal>lft(P,r, K)</literal> is the linear fractional transform
            between <literal>P</literal> and a controller <literal>K</literal>
            (<literal>K</literal> may be a gain or a controller in state space form
            or in transfer form);
        </para>
        <para>
            <literal>lft(P,K)</literal> is <literal>lft(P,r,K)</literal> with
            <literal>r</literal>=size of <literal>K</literal> transpose;
        </para>
        <para>
            <literal>P1= P11+P12*K* (I-P22*K)^-1 *P21</literal>
        </para>
        <para>
            <literal>[P1,r1]=lft(P,r,Ps,rs)</literal> returns the generalized (2
            ports) lft of <literal>P</literal> and <literal>Ps</literal>.
        </para>
        <para>
            <literal>P1</literal> is the pair two-port interconnected plant and the
            partition of <literal>P1</literal> into 4 blocks in given by
            <literal>r1</literal> which is the dimension of the <literal>22</literal>
            block of <literal>P1</literal>.
        </para>
        <para>
            <literal>P</literal> and <literal>R</literal> can be PSSDs i.e. may admit a
            polynomial <literal>D</literal> matrix.
        </para>
    </refsection>
    <refsection>
        <title>Examples</title>
        <programlisting role="example"><![CDATA[ 
s=poly(0,'s');
P=[1/s, 1/(s+1); 1/(s+2),2/s]; K= 1/(s-1);
lft(P,K)
lft(P,[1,1],K)
P(1,1)+P(1,2)*K*inv(1-P(2,2)*K)*P(2,1)   //Numerically dangerous!
ss2tf(lft(tf2ss(P),tf2ss(K)))
lft(P,-1)
f=[0,0;0,1];w=P/.f; w(1,1)
//Improper plant (PID control)
W=[1,1;1,1/(s^2+0.1*s)];K=1+1/s+s
lft(W,[1,1],K); ss2tf(lft(tf2ss(W),[1,1],tf2ss(K)))
 ]]></programlisting>
    </refsection>
    <refsection role="see also">
        <title>See Also</title>
        <simplelist type="inline">
            <member>
                <link linkend="sensi">sensi</link>
            </member>
            <member>
                <link linkend="augment">augment</link>
            </member>
            <member>
                <link linkend="feedback">feedback</link>
            </member>
            <member>
                <link linkend="sysdiag">sysdiag</link>
            </member>
        </simplelist>
    </refsection>
</refentry>