1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) INRIA -
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
*
-->
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="cainv">
<refnamediv>
<refname>cainv</refname>
<refpurpose>Dual of abinv</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[X,dims,J,Y,k,Z]=cainv(Sl,alfa,beta,flag)</synopsis>
</refsynopsisdiv>
<refsection>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term>Sl</term>
<listitem>
<para>
<literal>syslin</literal> list containing the matrices <literal>[A,B,C,D]</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>alfa</term>
<listitem>
<para>real number or vector (possibly complex, location of closed loop poles)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>beta</term>
<listitem>
<para>real number or vector (possibly complex, location of closed loop poles)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>flag</term>
<listitem>
<para>
(optional) character string <literal>'ge'</literal> (default) or <literal>'st'</literal> or <literal>'pp'</literal>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>X</term>
<listitem>
<para>orthogonal matrix of size nx (dim of state space).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>dims</term>
<listitem>
<para>
integer row vector <literal>dims=[nd1,nu1,dimS,dimSg,dimN]</literal> (5 entries, nondecreasing order).If <literal>flag='st'</literal>, (resp. <literal>'pp'</literal>), <literal>dims</literal> has 4 (resp. 3) components.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>J</term>
<listitem>
<para>real matrix (output injection)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Y</term>
<listitem>
<para>orthogonal matrix of size ny (dim of output space).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>k</term>
<listitem>
<para>
integer (normal rank of <literal>Sl</literal>)
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Z</term>
<listitem>
<para>
non-singular linear system (<literal>syslin</literal> list)
</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
<literal>cainv</literal> finds a bases <literal>(X,Y)</literal> (of state space and output space resp.)
and output injection matrix <literal>J</literal> such that the matrices of Sl in
bases (X,Y) are displayed as:
</para>
<programlisting role=""><![CDATA[
[A11,*,*,*,*,*] [*]
[0,A22,*,*,*,*] [*]
X'*(A+J*C)*X = [0,0,A33,*,*,*] X'*(B+J*D) = [*]
[0,0,0,A44,*,*] [0]
[0,0,0,0,A55,*] [0]
[0,0,0,0,0,A66] [0]
Y*C*X = [0,0,C13,*,*,*] Y*D = [*]
[0,0,0,0,0,C26] [0]
]]></programlisting>
<para>
The partition of <literal>X</literal> is defined by the vector
<literal>dims=[nd1,nu1,dimS,dimSg,dimN]</literal> and the partition of <literal>Y</literal>
is determined by <literal>k</literal>.
</para>
<para>
Eigenvalues of <literal>A11</literal> <literal>(nd1 x nd1)</literal> are unstable.
Eigenvalues of <literal>A22</literal> <literal>(nu1-nd1 x nu1-nd1)</literal> are stable.
</para>
<para>
The pair <literal>(A33, C13)</literal> <literal>(dimS-nu1 x dimS-nu1, k x dimS-nu1)</literal> is observable,
and eigenvalues of <literal>A33</literal> are set to <literal>alfa</literal>.
</para>
<para>
Matrix <literal>A44</literal> <literal>(dimSg-dimS x dimSg-dimS)</literal> is unstable.
Matrix <literal>A55</literal> <literal>(dimN-dimSg,dimN-dimSg)</literal> is stable
</para>
<para>
The pair <literal>(A66,C26)</literal> <literal>(nx-dimN x nx-dimN)</literal> is observable,
and eigenvalues of <literal>A66</literal> set to <literal>beta</literal>.
</para>
<para>
The <literal>dimS</literal> first columns of <literal>X</literal> span S= smallest (C,A) invariant
subspace which contains Im(B), <literal>dimSg</literal> first columns of <literal>X</literal>
span Sg the maximal "complementary detectability subspace" of <literal>Sl</literal>
</para>
<para>
The <literal>dimN</literal> first columns of <literal>X</literal> span the maximal
"complementary observability subspace" of <literal>Sl</literal>.
(<literal>dimS=0</literal> if B(ker(D))=0).
</para>
<para>
If <literal>flag='st'</literal> is given, a five blocks partition of the matrices is
returned and <literal>dims</literal> has four components. If <literal>flag='pp'</literal> is
given a four blocks partition is returned (see abinv).
</para>
<para>
This function can be used to calculate an unknown input observer:
</para>
<programlisting role=""><![CDATA[
// DDEP: dot(x)=A x + Bu + Gd
// y= Cx (observation)
// z= Hx (z=variable to be estimated, d=disturbance)
// Find: dot(w) = Fw + Ey + Ru such that
// zhat = Mw + Ny
// z-Hx goes to zero at infinity
// Solution exists iff Ker H contains Sg(A,C,G) inter KerC (assuming detectability)
//i.e. H is such that:
// For any W which makes a column compression of [Xp(1:dimSg,:);C]
// with Xp=X' and [X,dims,J,Y,k,Z]=cainv(syslin('c',A,G,C));
// [Xp(1:dimSg,:);C]*W = [0 | *] one has
// H*W = [0 | *] (with at least as many aero columns as above).
]]></programlisting>
</refsection>
<refsection role="see also">
<title>See Also</title>
<simplelist type="inline">
<member>
<link linkend="abinv">abinv</link>
</member>
<member>
<link linkend="dt_ility">dt_ility</link>
</member>
<member>
<link linkend="ui_observer">ui_observer</link>
</member>
</simplelist>
</refsection>
</refentry>
|