1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
function state=truck_solve(initial,final)
//
// CAR WITH 2 TRAILERS PACKING VIA FLATNESS AND FRENET FORMULAS
//
// explicit computation and visualisation of the motions.
//
// February 1993
//
// ............................................................
// : pierre ROUCHON <rouchon@cas.ensmp.fr> :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France :
// : Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93 :
// :..........................................................:
//
// initial: initial position [x,y,theta1,theta2,theta3,phi]
// final : final position [x,y,theta1,theta2,theta3,phi]
// theta1,theta2,theta3 : the car and the trailers angles
// phi : the front wheel angle
bigT = 1 ;//basic time interval for one smooth motion (s)
bigL = 1 ;// car length (m)
d1 = 1.5 ; d2 = 1 ; //trailers length
// computation of intermediate configuration
LL=bigL+d1+d2
x0 = max(initial(1),final(2)) ....
+ LL*abs(tan(initial(3))) ...
+ LL*abs(tan(initial(4))) ...
+ LL*abs(tan(initial(5))) ...
+ LL*(abs(initial(2)-final(2))/(d1+d2+bigL))^(1/2) ;
y0 = (initial(2)+final(2))/2 ;
intermediate=[x0,y0,0,0,0,0]'
// first polynomial curve
state=truck_polynomial_curve(initial,intermediate,"direct")
//
// second polynomial curve
state = [ state;
truck_polynomial_curve(final,intermediate,"reverse") ]
endfunction
function state=truck_polynomial_curve(initial,final,orient)
nbpt = 40 ; // sampling of motion
phi = initial(6) ;
theta2 = initial(3) ;
theta1 = initial(4)+theta2
theta0 = initial(5)+theta1
x0=initial(1)+d2*cos(theta2)+d1*cos(theta1) ;
y0=initial(2)+d2*sin(theta2)+d1*sin(theta1) ;
if orient<>"reverse" then
state = [x0 y0 theta0 theta1 theta2 phi] ;
else
state=[]
end
a0=final(1);a1=initial(1);b0=final(2)
db = initial(2)-final(2)
p = cr2Tkf(db,initial(3),initial(4),initial(5),phi) ;
tau=(0:nbpt)'/nbpt
phi=tau.*tau.*(3-2*tau) ;
if orient=="reverse" then
aa = (1-phi)*final(1) + phi*initial(1) ;
else
aa = (1-phi)*initial(1) + phi*final(1) ;
end
for i=1:(nbpt+1)
[bb,df,d2f,d3f,d4f,d5f] = cr2Tfjt(aa(i)) ;
[k2,k1,k0,dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f) ;
theta2 = atan(df);
theta1 = atan(k2*d2)+theta2;
theta0 = atan(k1*d1) + theta1 ;
phi = atan(k0*bigL) ;
x0=aa(i)+d2*cos(theta2)+d1*cos(theta1) ;
y0=bb+d2*sin(theta2)+d1*sin(theta1) ;
state= [ state;
x0 y0 theta0 theta1 theta2 phi] ;
end
endfunction
function [ff,df,d2f,d3f,d4f,d5f]=cr2Tfjt(a)
//
//
da = a-a0
M= [ da^5 da^6 da^7 da^8 da^9
5*da^4 6*da^5 7*da^6 8*da^7 9*da^8
20*da^3 30*da^4 42*da^5 56*da^6 72*da^7
60*da^2 120*da^3 210*da^4 336*da^5 504*da^6
120*da^1 360*da^2 840*da^3 1680*da^4 3024*da^5
120 720*da^1 2520*da^2 6720*da^3 15120*da^4]*p ;
ff = M(1) + b0 ;
df = M(2) ;
d2f = M(3) ;
d3f = M(4) ;
d4f = M(5) ;
d5f = M(6) ;
endfunction
function coef=cr2Tkf(b,theta2,theta12,theta01,phi)
//
//
da = a1-a0
M = [1*da^5 1*da^6 1*da^7 1*da^8 1*da^9
5*da^4 6*da^5 7*da^6 8*da^7 9*da^8
20*da^3 30*da^4 42*da^5 56*da^6 72*da^7
60*da^2 120*da^3 210*da^4 336*da^5 504*da^6
120*da^1 360*da^2 840*da^3 1680*da^4 3024*da^5] ;
//
//
df = tan(theta2) ;
//
// curvatures
k2=tan(theta12)/d2;k1=tan(theta01)/d1;k0=tan(phi)/bigL;
//
ddf = k2*((1+df*df)^(3/2)) ;
//
// derivative of k2
dk2ds2 = ( (1+(d2*k2)^2)/d2 )*( (1+(d2*k2)^2)^(1/2)*k1 - k2 ) ;
dk2 = (1+df*df)^(1/2) * dk2ds2 ;
//
dddf = dk2 * (1+df*df)^(3/2) + 3*k2*df*ddf*(1+df*df)^(1/2) ;
//
// second derivative of k2
dk1ds1 = ( (1+(d1*k1)^2)/d1 )*( (1+(d1*k1)^2)^(1/2)*k0 - k1 ) ;
dk1ds2 = dk1ds1 * (1+(d2*k2)^2)^(1/2) ;
//
ddk2ds2 = ....
3*d2*k2*dk2ds2*(1+(d2*k2)^2)^(1/2)*k1 ....
+ (1+(d2*k2)^2)^(3/2)*dk1ds2/d2 ...
- (1/d2+3*d2*k2*k2)*dk2ds2 ;
//
ddk2 = ....
df*ddf*((1+df*df)^(-1/2))*dk2ds2 ....
+ (1+df*df)*ddk2ds2 ;
//
ddddf = ....
ddk2 * (1+df*df)^(3/2) ....
+ 6*dk2*df*ddf*(1+df*df)^(1/2) ....
+ 3*k2*ddf*ddf*(1+df*df)^(1/2) ....
+ 3*k2*df*dddf*(1+df*df)^(1/2) ....
+ 3*k2*(df*ddf)^2*(1+df*df)^(-1/2) ;
//
//
//
//
coef =inv(M)* [b;df;ddf;dddf;ddddf] ;
endfunction
function [k2,k1,k0,dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f)
//
//
// computation of curvatures from derivatives of b=f(a)
//
g = (1+df^2)^(-1/2);
dg = - df*d2f*g^3 ;
d2g = - g*g*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ;
d3g = ....
- 2*g*dg*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ....
- g^2*(3*d2f*d3f*g+df*d4f*g ....
+ 4*d2f^2*dg+4*df*d3f*dg+3*df*d2f*d2g) ;
//
k2 = d2f * g^3 ;
dk2 = d3f*g^3 + 3*d2f*g^2*dg ;
d2k2 = g^2*(d4f*g+6*d3f*dg+3*d2f*d2g) + 6*g*dg^2*d2f ;
d3k2 = 2*g*dg*(d4f*g+6*d3f*dg+3*d2f*d2g) ....
+ g^2*(d5f*g+7*d4f*dg+9*d3f*d2g+3*d2f*d3g) ....
+6*dg^3*d2f+12*g*dg*d2g*d2f+6*g*dg^2*d3f ;
//
g2 = (1+(d2*k2)^2)^(-1/2) ;
dg2 = -d2^2*k2*dk2*g2^3 ;
d2g2 = -d2^2*g2^2*(dk2^2*g2+k2*d2k2*g2+3*k2*dk2*dg2) ;
//
h2 = g2^3*g ;
dh2 = g2^2*(3*dg2*g+g2*dg);
d2h2 = 2*g2*dg2*(3*dg2*g+g2*dg) ....
+ g2^2*(3*d2g2*g+4*dg2*dg+g2*d2g) ;
//
k1 = g2*k2 + d2*h2*dk2 ;
dk1 = dg2*k2 + g2*dk2 + d2 * (dh2*dk2+h2*d2k2) ;
d2k1 = d2g2*k2 + 2*dg2*dk2 + g2*d2k2 ....
+ d2 * (d2h2*dk2+2*dh2*d2k2+h2*d3k2) ;
//
g1 = (1+(d1*k1)^2)^(-1/2) ;
dg1 = - d1^2*k1*dk1*g1^3 ;
//
k0 = g1*k1 + d1*g1^3*g2*g*dk1 ;
dk0 = dg1*k1 + g1*dk1 ....
+ d1*g1^2*(3*dg1*g2*g*dk1+g1*dg2*g*dk1 ....
+ g1*g2*dg*dk1+g1*g2*g*d2k1) ;
endfunction
function display_truck_trajectory(state)
bigL = 1 ; d1 = 1.5 ; d2 = 1;
a=gca();
drawlater();
a.isoview="on"
a.data_bounds=[min(state(:,1))-1.5*(d1+d2), min(state(:,2))-bigL
max(state(:,1))+1.5*bigL, max(state(:,2))+bigL]
rect=matrix(a.data_bounds',-1,1)
xpoly(rect([1 3 3 1]),rect([2,2,4,4]),"lines",1)
C=build_truck()
Cinit=[];
Cend=[];
Cinter=[];
for k=1:size(C,"*")
Cinit=[Cinit copy(C(k))];
Cinter=[Cinter,copy(C(k))];
Cend=[Cend,copy(C(k))]
end
// starting configuration
draw_truck(Cinit,state(1,:))
// end configuration
draw_truck(Cend,state($,:))
// intermediate configuration (inversion of velocity)
draw_truck(Cinter,state(ceil(size(state,1)/2),:)) ;
// trajectory of the linearizing output
x_lin = state(:,1)-d1*cos(state(:,4))-d2*cos(state(:,5)) ;
y_lin = state(:,2)-d1*sin(state(:,4))-d2*sin(state(:,5)) ;
t1=polyline([x_lin(1) y_lin(1);x_lin(1) y_lin(1)]) ;
t2=polyline([state(1,1) state(1,2);state(1,1) state(1,2)]) ;
t1.line_style=2;
t2.line_style=2;t2.foreground=5
realtimeinit(0.2)
for i=1:size(state,1)
realtime(i)
drawlater()
draw_truck(C, state(i,:))
t1.data=[t1.data;x_lin(i), y_lin(i)];
t2.data=[t2.data;state(i,1), state(i,2)];
drawnow()
end
for i=(1:30)+size(state,1),realtime(i),end
endfunction
function C=build_truck()
//build the graphic object for the truck
//
//the car
hcar=polyline([-2,7,8,8,7,-2,-2;-2,-2,-1,1,2,2,-2]'/6)
hcar.foreground=2
// rear wheels
hwheel1=polyline([[-1 1]/8; [1 1]/6]')
hwheel1.thickness=2
hwheel2=polyline([[-1 1]/8; -[1 1]/6]')
hwheel2.thickness=2
// front wheels
hwheel3=polyline([[7 9]/8;[1 1]/6]')
hwheel3.thickness=2
hwheel4=polyline([[7 9]/8;-[1 1]/6]')
hwheel4.thickness=2
//Trailer 1
ht1=polyline([-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3)
ht1.foreground=2
hwheel5=polyline([[-1 1]/8;[1 1]/6]'*bigL)
hwheel5.thickness=2
hwheel6=polyline([[-1 1]/8;-[1 1]/6]'*bigL)
hwheel6.thickness=2
hhitch1=polyline([bigL/3 d1;0 0]')
hhitch1.foreground=2
//Trailer 2
ht2=polyline([-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3)
ht2.foreground=2
hwheel7=polyline([[-1 1]/8;[1 1]/6]'*bigL)
hwheel7.thickness=2
hwheel8=polyline([[-1 1]/8;-[1 1]/6]'*bigL)
hwheel8.thickness=2
hhitch2=polyline([bigL/3 d2;0 0]')
hhitch2.foreground=2
//return vector of handle on the objects
C=[hcar,hwheel1,hwheel2,hwheel3,hwheel4,..
ht1,hwheel5, hwheel6,hhitch1,..
ht2, hwheel7,hwheel8,hhitch2]
endfunction
function draw_truck(C,pos)
drawlater()
[x,y,theta1,theta2,theta3,phi]=(pos(1),pos(2),pos(3),pos(4),pos(5),pos(6))
bigL = 1 ; d1 = 1.5 ; d2 = 1;
Rc=[cos(theta1) sin(theta1);-sin(theta1) cos(theta1)]
// the car
xy = [-2,-2;7,-2;8,-1;8,1;7,2;-2,2;-2,-2]/6
C(1).data=ones(xy)*diag([x;y])+bigL*xy*Rc
// rear wheels
xy=[[-1 1]/8; [1 1]/6]'
C(2).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[[-1 1]/8; -[1 1]/6]'
C(3).data=ones(xy)*diag([x;y])+bigL*xy*Rc
// front wheels
xy=[(1-cos(phi)/8) (1/6-sin(phi)/8)
(1+cos(phi)/8) (1/6+sin(phi)/8)]
C(4).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[(1-cos(phi)/8) (-1/6-sin(phi)/8)
(1+cos(phi)/8) (-1/6+sin(phi)/8)]
C(5).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//Trailer 1
Rc=[cos(theta2) sin(theta2);-sin(theta2) cos(theta2)]
x = x - d1*cos(theta2) ;
y = y - d1*sin(theta2) ;
xy = [-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3;
C(6).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//wheels
xy=[[-1 1]/8; [1 1]/6]'
C(7).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[[-1 1]/8; -[1 1]/6]'
C(8).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//hitch
xy=[bigL/3 d1;0 0]'
C(9).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//Trailer 2
Rc=[cos(theta3) sin(theta3);-sin(theta3) cos(theta3)]
x = x - d2*cos(theta3) ;
y = y - d2*sin(theta3) ;
xy = [-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3;
C(10).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//wheels
xy=[[-1 1]/8; [1 1]/6]'
C(11).data=ones(xy)*diag([x;y])+bigL*xy*Rc
xy=[[-1 1]/8; -[1 1]/6]'
C(12).data=ones(xy)*diag([x;y])+bigL*xy*Rc
//hitch
xy=[bigL/3 d2;0 0]'
C(13).data=ones(xy)*diag([x;y])+bigL*xy*Rc
drawnow()
endfunction
function h=polyline(xy)
xpoly(xy(:,1),xy(:,2),"lines")
h=gce()
endfunction
|