summaryrefslogtreecommitdiff
path: root/modules/cacsd/demos/flat/truck.sci
blob: 43f948302ce8d685f88f05f502970c68247ab711 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


function state=truck_solve(initial,final)
    //
    //  CAR  WITH 2 TRAILERS PACKING VIA FLATNESS AND FRENET FORMULAS
    //
    //    explicit computation and visualisation of the motions.
    //
    //    February 1993
    //
    // ............................................................
    // :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
    // : Centre Automatique et Systemes, Ecole des Mines de Paris :
    // : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
    // :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
    // :..........................................................:
    //
    // initial: initial position [x,y,theta1,theta2,theta3,phi]
    // final  :   final position [x,y,theta1,theta2,theta3,phi]
    //        theta1,theta2,theta3  : the car and the trailers angles
    //        phi    : the front wheel angle

    bigT = 1 ;//basic time interval for one  smooth motion (s)
    bigL = 1 ;// car length (m)
    d1 = 1.5 ; d2 = 1 ; //trailers length

    // computation of  intermediate configuration
    LL=bigL+d1+d2
    x0 = max(initial(1),final(2))   ....
    + LL*abs(tan(initial(3))) ...
    + LL*abs(tan(initial(4))) ...
    + LL*abs(tan(initial(5))) ...
    + LL*(abs(initial(2)-final(2))/(d1+d2+bigL))^(1/2) ;
    y0 = (initial(2)+final(2))/2 ;
    intermediate=[x0,y0,0,0,0,0]'

    // first polynomial curve
    state=truck_polynomial_curve(initial,intermediate,"direct")
    //
    // second polynomial curve
    state = [ state;
    truck_polynomial_curve(final,intermediate,"reverse")	    ]

endfunction



function state=truck_polynomial_curve(initial,final,orient)

    nbpt = 40 ; //  sampling of motion
    phi = initial(6) ;

    theta2 = initial(3) ;
    theta1 = initial(4)+theta2
    theta0 = initial(5)+theta1

    x0=initial(1)+d2*cos(theta2)+d1*cos(theta1) ;
    y0=initial(2)+d2*sin(theta2)+d1*sin(theta1) ;
    if orient<>"reverse" then
        state = [x0 y0 theta0 theta1 theta2 phi] ;
    else
        state=[]
    end
    a0=final(1);a1=initial(1);b0=final(2)
    db = initial(2)-final(2)
    p = cr2Tkf(db,initial(3),initial(4),initial(5),phi) ;

    tau=(0:nbpt)'/nbpt
    phi=tau.*tau.*(3-2*tau) ;
    if orient=="reverse" then
        aa = (1-phi)*final(1) + phi*initial(1) ;
    else
        aa = (1-phi)*initial(1) + phi*final(1) ;
    end
    for i=1:(nbpt+1)
        [bb,df,d2f,d3f,d4f,d5f] = cr2Tfjt(aa(i)) ;
        [k2,k1,k0,dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f) ;
        theta2 = atan(df);
        theta1 = atan(k2*d2)+theta2;
        theta0 = atan(k1*d1) + theta1 ;
        phi = atan(k0*bigL) ;
        x0=aa(i)+d2*cos(theta2)+d1*cos(theta1) ;
        y0=bb+d2*sin(theta2)+d1*sin(theta1) ;
        state= [ state;
        x0 y0 theta0 theta1 theta2 phi] ;
    end
endfunction

function [ff,df,d2f,d3f,d4f,d5f]=cr2Tfjt(a)
    //
    //
    da = a-a0
    M= [  da^5      da^6      da^7      da^8       da^9
    5*da^4    6*da^5    7*da^6    8*da^7     9*da^8
    20*da^3   30*da^4   42*da^5   56*da^6    72*da^7
    60*da^2  120*da^3  210*da^4  336*da^5   504*da^6
    120*da^1  360*da^2  840*da^3 1680*da^4  3024*da^5
    120       720*da^1 2520*da^2 6720*da^3 15120*da^4]*p ;
    ff  = M(1) + b0 ;
    df  = M(2) ;
    d2f = M(3) ;
    d3f = M(4) ;
    d4f = M(5) ;
    d5f = M(6) ;
endfunction

function coef=cr2Tkf(b,theta2,theta12,theta01,phi)
    //
    //
    da = a1-a0
    M = [1*da^5    1*da^6   1*da^7    1*da^8    1*da^9
    5*da^4    6*da^5   7*da^6    8*da^7    9*da^8
    20*da^3   30*da^4  42*da^5   56*da^6   72*da^7
    60*da^2  120*da^3 210*da^4  336*da^5  504*da^6
    120*da^1  360*da^2 840*da^3 1680*da^4 3024*da^5] ;
    //
    //
    df = tan(theta2) ;
    //
    // curvatures
    k2=tan(theta12)/d2;k1=tan(theta01)/d1;k0=tan(phi)/bigL;
    //
    ddf = k2*((1+df*df)^(3/2)) ;
    //
    // derivative of k2
    dk2ds2 = ( (1+(d2*k2)^2)/d2 )*( (1+(d2*k2)^2)^(1/2)*k1 - k2 ) ;
    dk2 = (1+df*df)^(1/2) * dk2ds2 ;
    //
    dddf = dk2 * (1+df*df)^(3/2)  + 3*k2*df*ddf*(1+df*df)^(1/2) ;
    //
    // second derivative of k2
    dk1ds1 = ( (1+(d1*k1)^2)/d1 )*( (1+(d1*k1)^2)^(1/2)*k0 - k1 ) ;
    dk1ds2 = dk1ds1 *  (1+(d2*k2)^2)^(1/2) ;
    //
    ddk2ds2 =  ....
    3*d2*k2*dk2ds2*(1+(d2*k2)^2)^(1/2)*k1 ....
    + (1+(d2*k2)^2)^(3/2)*dk1ds2/d2 ...
    - (1/d2+3*d2*k2*k2)*dk2ds2 ;
    //
    ddk2 = ....
    df*ddf*((1+df*df)^(-1/2))*dk2ds2 ....
    + (1+df*df)*ddk2ds2 ;
    //
    ddddf =  ....
    ddk2 * (1+df*df)^(3/2) ....
    + 6*dk2*df*ddf*(1+df*df)^(1/2) ....
    + 3*k2*ddf*ddf*(1+df*df)^(1/2) ....
    + 3*k2*df*dddf*(1+df*df)^(1/2) ....
    + 3*k2*(df*ddf)^2*(1+df*df)^(-1/2) ;
    //
    //
    //
    //
    coef =inv(M)* [b;df;ddf;dddf;ddddf] ;
endfunction

function [k2,k1,k0,dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f)
    //
    //
    // computation of curvatures from derivatives of b=f(a)
    //
    g = (1+df^2)^(-1/2);
    dg = - df*d2f*g^3 ;
    d2g = - g*g*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ;
    d3g = ....
    - 2*g*dg*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ....
    - g^2*(3*d2f*d3f*g+df*d4f*g ....
    + 4*d2f^2*dg+4*df*d3f*dg+3*df*d2f*d2g) ;
    //
    k2  = d2f * g^3  ;
    dk2 = d3f*g^3 + 3*d2f*g^2*dg ;
    d2k2 = g^2*(d4f*g+6*d3f*dg+3*d2f*d2g) + 6*g*dg^2*d2f ;
    d3k2 = 2*g*dg*(d4f*g+6*d3f*dg+3*d2f*d2g) ....
    + g^2*(d5f*g+7*d4f*dg+9*d3f*d2g+3*d2f*d3g) ....
    +6*dg^3*d2f+12*g*dg*d2g*d2f+6*g*dg^2*d3f ;
    //
    g2 = (1+(d2*k2)^2)^(-1/2) ;
    dg2 = -d2^2*k2*dk2*g2^3 ;
    d2g2 = -d2^2*g2^2*(dk2^2*g2+k2*d2k2*g2+3*k2*dk2*dg2) ;
    //
    h2 = g2^3*g ;
    dh2 = g2^2*(3*dg2*g+g2*dg);
    d2h2 = 2*g2*dg2*(3*dg2*g+g2*dg) ....
    + g2^2*(3*d2g2*g+4*dg2*dg+g2*d2g) ;
    //
    k1 = g2*k2 + d2*h2*dk2 ;
    dk1 = dg2*k2 + g2*dk2 + d2 * (dh2*dk2+h2*d2k2) ;
    d2k1 = d2g2*k2 + 2*dg2*dk2 + g2*d2k2 ....
    + d2 * (d2h2*dk2+2*dh2*d2k2+h2*d3k2) ;
    //
    g1 = (1+(d1*k1)^2)^(-1/2) ;
    dg1 = - d1^2*k1*dk1*g1^3 ;
    //
    k0 = g1*k1 + d1*g1^3*g2*g*dk1 ;
    dk0 = dg1*k1 + g1*dk1 ....
    + d1*g1^2*(3*dg1*g2*g*dk1+g1*dg2*g*dk1 ....
    +  g1*g2*dg*dk1+g1*g2*g*d2k1) ;

endfunction

function display_truck_trajectory(state)
    bigL = 1 ; d1 = 1.5 ; d2 = 1;
    a=gca();
    drawlater();
    a.isoview="on"
    a.data_bounds=[min(state(:,1))-1.5*(d1+d2), min(state(:,2))-bigL
    max(state(:,1))+1.5*bigL, max(state(:,2))+bigL]
    rect=matrix(a.data_bounds',-1,1)
    xpoly(rect([1 3 3 1]),rect([2,2,4,4]),"lines",1)
    C=build_truck()
    Cinit=[];
    Cend=[];
    Cinter=[];
    for k=1:size(C,"*")
        Cinit=[Cinit copy(C(k))];
        Cinter=[Cinter,copy(C(k))];
        Cend=[Cend,copy(C(k))]
    end
    // starting configuration
    draw_truck(Cinit,state(1,:))
    // end configuration
    draw_truck(Cend,state($,:))
    // intermediate configuration (inversion of velocity)
    draw_truck(Cinter,state(ceil(size(state,1)/2),:)) ;
    // trajectory of the linearizing output
    x_lin = state(:,1)-d1*cos(state(:,4))-d2*cos(state(:,5)) ;
    y_lin = state(:,2)-d1*sin(state(:,4))-d2*sin(state(:,5)) ;

    t1=polyline([x_lin(1) y_lin(1);x_lin(1) y_lin(1)]) ;
    t2=polyline([state(1,1) state(1,2);state(1,1) state(1,2)]) ;

    t1.line_style=2;
    t2.line_style=2;t2.foreground=5
    realtimeinit(0.2)
    for i=1:size(state,1)
        realtime(i)
        drawlater()
        draw_truck(C, state(i,:))
        t1.data=[t1.data;x_lin(i), y_lin(i)];
        t2.data=[t2.data;state(i,1), state(i,2)];
        drawnow()
    end
    for i=(1:30)+size(state,1),realtime(i),end
endfunction


function C=build_truck()
    //build the graphic object for the truck
    //
    //the car
    hcar=polyline([-2,7,8,8,7,-2,-2;-2,-2,-1,1,2,2,-2]'/6)
    hcar.foreground=2
    // rear wheels
    hwheel1=polyline([[-1 1]/8; [1 1]/6]')
    hwheel1.thickness=2

    hwheel2=polyline([[-1 1]/8; -[1 1]/6]')
    hwheel2.thickness=2

    // front wheels
    hwheel3=polyline([[7 9]/8;[1 1]/6]')
    hwheel3.thickness=2
    hwheel4=polyline([[7 9]/8;-[1 1]/6]')
    hwheel4.thickness=2

    //Trailer 1

    ht1=polyline([-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3)
    ht1.foreground=2
    hwheel5=polyline([[-1 1]/8;[1 1]/6]'*bigL)
    hwheel5.thickness=2
    hwheel6=polyline([[-1 1]/8;-[1 1]/6]'*bigL)
    hwheel6.thickness=2
    hhitch1=polyline([bigL/3  d1;0 0]')
    hhitch1.foreground=2
    //Trailer 2
    ht2=polyline([-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3)
    ht2.foreground=2
    hwheel7=polyline([[-1 1]/8;[1 1]/6]'*bigL)
    hwheel7.thickness=2
    hwheel8=polyline([[-1 1]/8;-[1 1]/6]'*bigL)
    hwheel8.thickness=2
    hhitch2=polyline([bigL/3  d2;0 0]')
    hhitch2.foreground=2



    //return vector of handle on the objects
    C=[hcar,hwheel1,hwheel2,hwheel3,hwheel4,..
    ht1,hwheel5, hwheel6,hhitch1,..
    ht2, hwheel7,hwheel8,hhitch2]
endfunction

function draw_truck(C,pos)
    drawlater()
    [x,y,theta1,theta2,theta3,phi]=(pos(1),pos(2),pos(3),pos(4),pos(5),pos(6))
    bigL = 1 ; d1 = 1.5 ; d2 = 1;
    Rc=[cos(theta1) sin(theta1);-sin(theta1) cos(theta1)]
    // the car
    xy = [-2,-2;7,-2;8,-1;8,1;7,2;-2,2;-2,-2]/6
    C(1).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    // rear wheels
    xy=[[-1 1]/8; [1 1]/6]'
    C(2).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    xy=[[-1 1]/8; -[1 1]/6]'
    C(3).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    // front wheels
    xy=[(1-cos(phi)/8) (1/6-sin(phi)/8)
    (1+cos(phi)/8) (1/6+sin(phi)/8)]
    C(4).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    xy=[(1-cos(phi)/8) (-1/6-sin(phi)/8)
    (1+cos(phi)/8) (-1/6+sin(phi)/8)]
    C(5).data=ones(xy)*diag([x;y])+bigL*xy*Rc

    //Trailer 1
    Rc=[cos(theta2) sin(theta2);-sin(theta2) cos(theta2)]
    x = x - d1*cos(theta2) ;
    y = y - d1*sin(theta2) ;
    xy = [-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3;
    C(6).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    //wheels
    xy=[[-1 1]/8; [1 1]/6]'
    C(7).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    xy=[[-1 1]/8; -[1 1]/6]'
    C(8).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    //hitch
    xy=[bigL/3  d1;0 0]'
    C(9).data=ones(xy)*diag([x;y])+bigL*xy*Rc

    //Trailer 2
    Rc=[cos(theta3) sin(theta3);-sin(theta3) cos(theta3)]
    x = x - d2*cos(theta3) ;
    y = y - d2*sin(theta3) ;
    xy = [-1,1,1,-1,-1;-1,-1,1,1,-1]'*bigL/3;
    C(10).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    //wheels
    xy=[[-1 1]/8; [1 1]/6]'
    C(11).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    xy=[[-1 1]/8; -[1 1]/6]'
    C(12).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    //hitch
    xy=[bigL/3  d2;0 0]'
    C(13).data=ones(xy)*diag([x;y])+bigL*xy*Rc
    drawnow()
endfunction

function h=polyline(xy)
    xpoly(xy(:,1),xy(:,2),"lines")
    h=gce()
endfunction