1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
//
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) ????-2008 - INRIA
//
// This file is distributed under the same license as the Scilab package.
//
function [xdot]=car(t,x)
//
//
xdot=zeros(1,4) ;
// car length for the control computation
LCpct = bigL * 1.;
// calcul de u1 et u2
//
if (t<0)
u1=0 ; u2=0 ;
elseif (t < bigT)
// motion 1
tau = t/bigT ;
phi=tau*tau*(3-2*tau) ;
dphi = 6*tau*(1-tau) ;
a = (1-phi)*a1 + phi*a0 ;
da = ((a0-a1)/bigT) * dphi ;
f = p(1).*(a-a0)^3 + p(2).*(a-a0)^4 + p(3).*(a-a0)^5 ;
df = 3*p(1).*(a-a0)^2 + 4*p(2).*(a-a0)^3 + 5*p(3).*(a-a0)^4 ;
ddf = 6*p(1).*(a-a0) + 12*p(2).*(a-a0)^2 + 20*p(3).*(a-a0)^3 ;
dddf= 6*p(1).*1 + 24*p(2).*(a-a0) + 60*p(3).*(a-a0)^2 ;
k = ddf / ((1+df*df)^(3/2)) ;
dk = ( dddf - 3*df*ddf*ddf/(1+df*df)) / ((1+df*df)^(3/2)) ;
u1 = ((1+df*df)^(1/2)) * da ;
u2 = (bigL*dk / (1+(bigL*k)^2) ) * da ;
elseif (t < (2*bigT) )
// motion 2
tau = t/bigT -1 ;
phi=tau*tau*(3-2*tau) ;
dphi = 6*tau*(1-tau) ;
a = (1-phi)*a0 + phi*a1 ;
da = ((a1-a0)/bigT) * dphi ;
f = p(1).*(a-a0)^3 + p(2).*(a-a0)^4 + p(3).*(a-a0)^5 ;
df = 3*p(1).*(a-a0)^2 + 4*p(2).*(a-a0)^3 + 5*p(3).*(a-a0)^4 ;
ddf = 6*p(1).*(a-a0) + 12*p(2).*(a-a0)^2 + 20*p(3).*(a-a0)^3 ;
dddf= 6*p(1).*1 + 24*p(2).*(a-a0) + 60*p(3).*(a-a0)^2 ;
k = ddf / ((1+df*df)^(3/2)) ;
dk = ( dddf - 3*df*ddf*ddf/(1+df*df)) / ((1+df*df)^(3/2)) ;
u1 = ((1+df*df)^(1/2)) * da ;
u2 = (LC*dk / (1+(LC*k)^2) ) * da ;
else
u1=0; u2=0;
end
xdot(1)= u1 * cos(x(1,3)) ;
xdot(2)= u1 * sin(x(1,3)) ;
xdot(3)= u1 * tan(x(1,4)) / bigL ;
xdot(4)= u2 ;
function [xdot]=car2T(t,x)
//
xdot=zeros(1,6) ;
// calcul de u1 et u2
//
if (t<0)
u1=0 ; u2=0 ;
elseif (t < bigT)
// motion
tau = t/bigT ;
phi=tau*tau*(3-2*tau) ;
dphi = 6*tau*(1-tau) ;
a = (1-phi)*a1 + phi*a0 ;
da = ((a0-a1)/bigT) * dphi ;
[ff df d2f d3f d4f d5f] = cr2Tfjt(a) ;
[k2 k1 k0 dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f) ;
u1 = ( (1+(d2*k2)^2)*(1+(d1*k1)^2)*(1+df^2) )^(1/2) * da ;
u2 = da * bigL * dk0 / (1+(bigL*k0)^2) ;
else
u1=0; u2=0;
end
xdot(1)= u1 * cos(x(1,3)) ;
xdot(2)= u1 * sin(x(1,3)) ;
xdot(3)= u1 * tan(x(1,6)) / bigL ;
xdot(4)= u1 * sin(x(1,3)-x(1,4)) / d1 ;
xdot(5)= u1 * sin(x(1,4)-x(1,5)) * cos(x(1,3)-x(1,4)) / d2 ;
xdot(6)= u2 ;
function [ff,df,d2f,d3f,d4f,d5f]=cr2Tfjt(a)
//
//
M= [
(a-a0)^5 (a-a0)^6 (a-a0)^7 (a-a0)^8 (a-a0)^9
5*(a-a0)^4 6*(a-a0)^5 7*(a-a0)^6 8*(a-a0)^7 9*(a-a0)^8
20*(a-a0)^3 30*(a-a0)^4 42*(a-a0)^5 56*(a-a0)^6 72*(a-a0)^7
60*(a-a0)^2 120*(a-a0)^3 210*(a-a0)^4 336*(a-a0)^5 504*(a-a0)^6
120*(a-a0)^1 360*(a-a0)^2 840*(a-a0)^3 1680*(a-a0)^4 3024*(a-a0)^5
120 720*(a-a0)^1 2520*(a-a0)^2 6720*(a-a0)^3 15120*(a-a0)^4
]*p ;
ff = M(1) + b0 ;
df = M(2) ;
d2f = M(3) ;
d3f = M(4) ;
d4f = M(5) ;
d5f = M(6) ;
function [k2,k1,k0,dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f)
//
//
// computation of curvatures from derivatives of b=f(a)
//
g = (1+df^2)^(-1/2);
dg = - df*d2f*g^3 ;
d2g = - g*g*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ;
d3g = ....
- 2*g*dg*(d2f^2*g+df*d3f*g+3*df*d2f*dg) ....
- g^2*(3*d2f*d3f*g+df*d4f*g ....
+ 4*d2f^2*dg+4*df*d3f*dg+3*df*d2f*d2g) ;
//
k2 = d2f * g^3 ;
dk2 = d3f*g^3 + 3*d2f*g^2*dg ;
d2k2 = g^2*(d4f*g+6*d3f*dg+3*d2f*d2g) + 6*g*dg^2*d2f ;
d3k2 = 2*g*dg*(d4f*g+6*d3f*dg+3*d2f*d2g) ....
+ g^2*(d5f*g+7*d4f*dg+9*d3f*d2g+3*d2f*d3g) ....
+6*dg^3*d2f+12*g*dg*d2g*d2f+6*g*dg^2*d3f ;
//
g2 = (1+(d2*k2)^2)^(-1/2) ;
dg2 = -d2^2*k2*dk2*g2^3 ;
d2g2 = -d2^2*g2^2*(dk2^2*g2+k2*d2k2*g2+3*k2*dk2*dg2) ;
//
h2 = g2^3*g ;
dh2 = g2^2*(3*dg2*g+g2*dg);
d2h2 = 2*g2*dg2*(3*dg2*g+g2*dg) ....
+ g2^2*(3*d2g2*g+4*dg2*dg+g2*d2g) ;
//
k1 = g2*k2 + d2*h2*dk2 ;
dk1 = dg2*k2 + g2*dk2 + d2 * (dh2*dk2+h2*d2k2) ;
d2k1 = d2g2*k2 + 2*dg2*dk2 + g2*d2k2 ....
+ d2 * (d2h2*dk2+2*dh2*d2k2+h2*d3k2) ;
//
g1 = (1+(d1*k1)^2)^(-1/2) ;
dg1 = - d1^2*k1*dk1*g1^3 ;
//
k0 = g1*k1 + d1*g1^3*g2*g*dk1 ;
dk0 = dg1*k1 + g1*dk1 ....
+ d1*g1^2*(3*dg1*g2*g*dk1+g1*dg2*g*dk1 ....
+ g1*g2*dg*dk1+g1*g2*g*d2k1) ;
function coef=cr2Tkf(b,theta2,theta12,theta01,phi)
//
//
M = [
1*(a1-a0)^5 1*(a1-a0)^6 1*(a1-a0)^7 1*(a1-a0)^8 1*(a1-a0)^9
5*(a1-a0)^4 6*(a1-a0)^5 7*(a1-a0)^6 8*(a1-a0)^7 9*(a1-a0)^8
20*(a1-a0)^3 30*(a1-a0)^4 42*(a1-a0)^5 56*(a1-a0)^6 72*(a1-a0)^7
60*(a1-a0)^2 120*(a1-a0)^3 210*(a1-a0)^4 336*(a1-a0)^5 504*(a1-a0)^6
120*(a1-a0)^1 360*(a1-a0)^2 840*(a1-a0)^3 1680*(a1-a0)^4 3024*(a1-a0)^5
] ;
//
//
df = tan(theta2) ;
//
// curvatures
k2=tan(theta12)/d2;k1=tan(theta01)/d1;k0=tan(phi)/bigL;
//
ddf = k2*((1+df*df)^(3/2)) ;
//
// derivative of k2
dk2ds2 = ( (1+(d2*k2)^2)/d2 )*( (1+(d2*k2)^2)^(1/2)*k1 - k2 ) ;
dk2 = (1+df*df)^(1/2) * dk2ds2 ;
//
dddf = dk2 * (1+df*df)^(3/2) + 3*k2*df*ddf*(1+df*df)^(1/2) ;
//
// second derivative of k2
dk1ds1 = ( (1+(d1*k1)^2)/d1 )*( (1+(d1*k1)^2)^(1/2)*k0 - k1 ) ;
dk1ds2 = dk1ds1 * (1+(d2*k2)^2)^(1/2) ;
//
ddk2ds2 = ....
3*d2*k2*dk2ds2*(1+(d2*k2)^2)^(1/2)*k1 ....
+ (1+(d2*k2)^2)^(3/2)*dk1ds2/d2 ...
- (1/d2+3*d2*k2*k2)*dk2ds2 ;
//
ddk2 = ....
df*ddf*((1+df*df)^(-1/2))*dk2ds2 ....
+ (1+df*df)*ddk2ds2 ;
//
ddddf = ....
ddk2 * (1+df*df)^(3/2) ....
+ 6*dk2*df*ddf*(1+df*df)^(1/2) ....
+ 3*k2*ddf*ddf*(1+df*df)^(1/2) ....
+ 3*k2*df*dddf*(1+df*df)^(1/2) ....
+ 3*k2*(df*ddf)^2*(1+df*df)^(-1/2) ;
//
//
//
//
coef =inv(M)* [b;df;ddf;dddf;ddddf] ;
function []=ptcr(state)
//
x=state(1);y=state(2);theta=state(3);phi=state(4);
//
// plot the car
//
// rear wheels
wheel1 = [ -1/8 1/8 ; 1/6 1/6 ] ;
wheel2 = [ -1/8 1/8 ; -1/6 -1/6 ] ;
// front wheels
wheel3 = [(1-cos(phi)/8) (1+cos(phi)/8);
(1/6-sin(phi)/8) (1/6+sin(phi)/8) ] ;
wheel4 = [(1-cos(phi)/8) (1+cos(phi)/8);
(-1/6-sin(phi)/8) (-1/6+sin(phi)/8) ] ;
//
// car + wheels
xy_car = [ [ -1/3 7/6 4/3 4/3 7/6 -1/3 -1/3;
-1/3 -1/3 -1/6 1/6 1/3 1/3 -1/3;
] wheel1 wheel2 wheel3 wheel4 ] ;
xy_car = ....
[x x x x x x x x x x x x x x x;
y y y y y y y y y y y y y y y ] + ....
bigL*[cos(theta) -sin(theta);sin(theta) cos(theta)]*xy_car ;
//
xpoly(xy_car(1,1:7),xy_car(2,1:7),"lines") ;
// The 4 wheels
xpolys(matrix(xy_car(1,8:15),2,4),matrix(xy_car(2,8:15),2,4),[1 1 1 1])
function ptcr2T(state)
// plot the car with two trailers
//
x0=state(1);y0=state(2);theta0=state(3);theta1=state(4);
theta2=state(5);phi=state(6);
theta = theta0 ; x=x0 ; y=y0 ;
// rear wheels
wheel1 = [ -1/8 1/8 ; 1/6 1/6 ] ;
wheel2 = [ -1/8 1/8 ; -1/6 -1/6 ] ;
// front wheels
wheel3 = [
(1-cos(phi)/8) (1+cos(phi)/8)
(1/6-sin(phi)/8) (1/6+sin(phi)/8)
] ;
wheel4 = [
(1-cos(phi)/8) (1+cos(phi)/8)
(-1/6-sin(phi)/8) (-1/6+sin(phi)/8)
] ;
//
// car + wheels
xy_car = [ [ -1/3 7/6 4/3 4/3 7/6 -1/3 -1/3
-1/3 -1/3 -1/6 1/6 1/3 1/3 -1/3 ] wheel1 wheel2 wheel3 wheel4 ] ;
xy_car = diag([x,y])*ones(2,15) + ...
bigL*[cos(theta0) -sin(theta0);sin(theta0) cos(theta0)]*xy_car ;
//
//
// Trailer 1
x = x - d1*cos(theta1) ;
y = y - d1*sin(theta1) ;
//
// shift + rotation
xy_T1 =diag([x,y])*ones(2,11) + ...
[cos(theta1) -sin(theta1);sin(theta1) cos(theta1)]*xy_T1 ;
//
// Trailer 2
x = x - d2*cos(theta2) ;
y = y - d2*sin(theta2) ;
//
// shift + rotation
xy_T2 = diag([x,y])*ones(2,11)+ ...
[cos(theta2) -sin(theta2);sin(theta2) cos(theta2)]*xy_T2 ;
//
// plots
//
// Car
xpoly(xy_car(1,1:7),xy_car(2,1:7),"lines") ;
// The 4 wheels
xpolys(matrix(xy_car(1,8:15),2,4),matrix(xy_car(2,8:15),2,4),[1 1 1 1])
// trailer 1
xpoly(xy_T1(1,1:5),xy_T1(2,1:5),"lines") ;
// hitch and wheels
xpolys(matrix(xy_T1(1,6:11),2,3),matrix(xy_T1(2,6:11),2,3),[1 1 1 1]);
//
// trailer 2
xpoly(xy_T2(1,1:5),xy_T2(2,1:5),"lines") ;
// hitch and wheels
xpolys(matrix(xy_T2(1,6:11),2,3),matrix(xy_T2(2,6:11),2,3),[1 1 1 1]);
|