summaryrefslogtreecommitdiff
path: root/modules/statistics/macros/variance.sci
diff options
context:
space:
mode:
Diffstat (limited to 'modules/statistics/macros/variance.sci')
-rwxr-xr-xmodules/statistics/macros/variance.sci125
1 files changed, 125 insertions, 0 deletions
diff --git a/modules/statistics/macros/variance.sci b/modules/statistics/macros/variance.sci
new file mode 100755
index 000000000..d9d39b6ee
--- /dev/null
+++ b/modules/statistics/macros/variance.sci
@@ -0,0 +1,125 @@
+// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
+// Copyright (C) 2000 - INRIA - Carlos Klimann
+// Copyright (C) 2013 - Samuel GOUGEON
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
+//
+
+function [s, m] = variance(x, orien, m)
+ //
+ //This function computes the variance of the values of a vector or
+ //matrix x.
+ //
+ //For a vector or a matrix x, s=variance(x) returns in the scalar s the
+ //variance of all the entries of x.
+ //
+ //s=variance(x,'r') (or, equivalently, s=variance(x,1)) is the rowwise
+ //variance. It returns in each entry of the row vector s the variance of
+ //each column of x.
+ //
+ //s=variance(x,'c') (or, equivalently, s=variance(x,2)) is the columnwise standard
+ //deviation. It returns in each entry of the column vector y the
+ //variance of each row of x.
+ //
+ //The input argument m represents the a priori mean. If it is present, then the sum is
+ //divided by n. Otherwise ("sample variance"), it is divided by n-1.
+ //
+
+ // Checking and normalizing input arguments:
+ // ----------------------------------------
+ [lhs,rhs] = argn(0)
+ if rhs==0 then
+ tmp = gettext("%s: Wrong number of input arguments: %d to %d expected.\n")
+ error(msprintf(tmp, "variance", 1, 2))
+ end
+
+ if x==[] then
+ s = %nan
+ return
+ end
+
+ if ~isdef("orien","local") then
+ orien = "*"
+ end
+
+ if rhs==3 then
+ if typeof(m)~="constant" then
+ tmp = gettext("%s: Wrong value of m : a priori mean expected.\n")
+ error(msprintf(tmp, "variance"))
+ elseif orien=="*" then
+ if ~isscalar(m) then
+ tmp = gettext("%s: Wrong value of m : a priori mean expected.\n")
+ error(msprintf(tmp, "variance"))
+ end
+ elseif orien=="r" | orien==1 then
+ if size(m)~=[1 size(x,"c")] & ~isscalar(m) then
+ tmp = gettext("%s: Wrong value of m : a priori mean expected.\n")
+ error(msprintf(tmp, "variance"))
+ end
+ elseif orien=="c" | orien==2 then
+ if size(m)~=[size(x,"r") 1] & ~isscalar(m) then
+ tmp = gettext("%s: Wrong value of m : a priori mean expected.\n")
+ error(msprintf(tmp, "variance"))
+ end
+ end
+ end
+
+ transposed = %f // to refer and process as in "r", we priorly transpose any "c" request
+ if orien=="r" | orien==1 | orien=="c" | orien==2 | orien=="*"
+ if orien=="c" | orien==2 then
+ x = x.'
+ transposed = %t
+ orien = "r"
+ end
+ else
+ tmp = gettext("%s: Wrong value for input argument #%d: ''%s'', ''%s'', %d or %d expected.\n")
+ error(msprintf(tmp, "variance", 2, "c", "r", 1, 2))
+ end
+
+ // Calculations
+ // ------------
+
+ d = size(x, orien) - 1 + exists("m","local") // Denominator. If m is given, then the a priori mean is known and we divide by size(n,orien)
+
+ if rhs == 3 & isnan(m) then
+ // This will compute the "biased variance": the denominator is size(x,orien) but the a priori mean is not considered as provided.
+ rhs = 2
+ end
+ if orien=="*" then
+ if rhs < 3 then
+ m = mean(x)
+ end
+ else
+ if rhs < 3 then
+ m = mean(x, orien).*.ones(size(x,1),1)
+ else
+ if isscalar(m) then
+ if or(m==[0 1]) then
+ tmp = _("%s: The significance of input argument #%d has been modified. Please refer to the variance help page.\n")
+ warning(msprintf(tmp, "variance", 3))
+ end
+ // If m is a scalar, extend it to the size of x.
+ // If lhs==1, we do not need to perform this operation, because in the following 'x - m', m can be a scalar
+ m = m*ones(x)
+ else
+ if transposed then
+ m = m.';
+ end
+ m = m.*.ones(size(x,1),1)
+ end
+ end
+ end
+
+ s = sum(abs(x - m).^2, orien) / d
+
+ m = m(1, :);
+ if transposed then
+ s = s.'
+ m = m.'
+ end
+
+endfunction