diff options
author | Shashank | 2017-05-29 12:40:26 +0530 |
---|---|---|
committer | Shashank | 2017-05-29 12:40:26 +0530 |
commit | 0345245e860375a32c9a437c4a9d9cae807134e9 (patch) | |
tree | ad51ecbfa7bcd3cc5f09834f1bb8c08feaa526a4 /usr/include/cholmod_complexity.h | |
download | scilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.tar.gz scilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.tar.bz2 scilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.zip |
CMSCOPE changed
Diffstat (limited to 'usr/include/cholmod_complexity.h')
-rwxr-xr-x | usr/include/cholmod_complexity.h | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/usr/include/cholmod_complexity.h b/usr/include/cholmod_complexity.h new file mode 100755 index 000000000..a84583ab3 --- /dev/null +++ b/usr/include/cholmod_complexity.h @@ -0,0 +1,264 @@ +/* ========================================================================== */ +/* === Include/cholmod_complexity.h ========================================= */ +/* ========================================================================== */ + +/* Define operations on pattern, real, complex, and zomplex objects. + * + * The xtype of an object defines it numerical type. A qttern object has no + * numerical values (A->x and A->z are NULL). A real object has no imaginary + * qrt (A->x is used, A->z is NULL). A complex object has an imaginary qrt + * that is stored interleaved with its real qrt (A->x is of size 2*nz, A->z + * is NULL). A zomplex object has both real and imaginary qrts, which are + * stored seqrately, as in MATLAB (A->x and A->z are both used). + * + * XTYPE is CHOLMOD_PATTERN, _REAL, _COMPLEX or _ZOMPLEX, and is the xtype of + * the template routine under construction. XTYPE2 is equal to XTYPE, except + * if XTYPE is CHOLMOD_PATTERN, in which case XTYPE is CHOLMOD_REAL. + * XTYPE and XTYPE2 are defined in cholmod_template.h. + */ + +/* -------------------------------------------------------------------------- */ +/* pattern */ +/* -------------------------------------------------------------------------- */ + +#define P_TEMPLATE(name) p_ ## name +#define P_ASSIGN2(x,z,p,ax,az,q) x [p] = 1 +#define P_PRINT(k,x,z,p) PRK(k, ("1")) + +/* -------------------------------------------------------------------------- */ +/* real */ +/* -------------------------------------------------------------------------- */ + +#define R_TEMPLATE(name) r_ ## name +#define R_ASSEMBLE(x,z,p,ax,az,q) x [p] += ax [q] +#define R_ASSIGN(x,z,p,ax,az,q) x [p] = ax [q] +#define R_ASSIGN_CONJ(x,z,p,ax,az,q) x [p] = ax [q] +#define R_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q] +#define R_XTYPE_OK(type) ((type) == CHOLMOD_REAL) +#define R_IS_NONZERO(ax,az,q) IS_NONZERO (ax [q]) +#define R_IS_ZERO(ax,az,q) IS_ZERO (ax [q]) +#define R_IS_ONE(ax,az,q) (ax [q] == 1) +#define R_MULT(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] * bx [r] +#define R_MULTADD(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r] +#define R_MULTSUB(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r] +#define R_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r] +#define R_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r] +#define R_ADD(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] + bx [r] +#define R_ADD_REAL(x,p, ax,q, bx,r) x [p] = ax [q] + bx [r] +#define R_CLEAR(x,z,p) x [p] = 0 +#define R_CLEAR_IMAG(x,z,p) +#define R_DIV(x,z,p,ax,az,q) x [p] /= ax [q] +#define R_LLDOT(x,p, ax,az,q) x [p] -= ax [q] * ax [q] +#define R_PRINT(k,x,z,p) PRK(k, ("%24.16e", x [p])) + +#define R_DIV_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] / bx [r] +#define R_MULT_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] * bx [r] + +#define R_LDLDOT(x,p, ax,az,q, bx,r) x [p] -=(ax[q] * ax[q])/ bx[r] + +/* -------------------------------------------------------------------------- */ +/* complex */ +/* -------------------------------------------------------------------------- */ + +#define C_TEMPLATE(name) c_ ## name +#define CT_TEMPLATE(name) ct_ ## name + +#define C_ASSEMBLE(x,z,p,ax,az,q) \ + x [2*(p) ] += ax [2*(q) ] ; \ + x [2*(p)+1] += ax [2*(q)+1] + +#define C_ASSIGN(x,z,p,ax,az,q) \ + x [2*(p) ] = ax [2*(q) ] ; \ + x [2*(p)+1] = ax [2*(q)+1] + +#define C_ASSIGN_REAL(x,p,ax,q) x [2*(p)] = ax [2*(q)] + +#define C_ASSIGN_CONJ(x,z,p,ax,az,q) \ + x [2*(p) ] = ax [2*(q) ] ; \ + x [2*(p)+1] = -ax [2*(q)+1] + +#define C_XTYPE_OK(type) ((type) == CHOLMOD_COMPLEX) + +#define C_IS_NONZERO(ax,az,q) \ + (IS_NONZERO (ax [2*(q)]) || IS_NONZERO (ax [2*(q)+1])) + +#define C_IS_ZERO(ax,az,q) \ + (IS_ZERO (ax [2*(q)]) && IS_ZERO (ax [2*(q)+1])) + +#define C_IS_ONE(ax,az,q) \ + ((ax [2*(q)] == 1) && IS_ZERO (ax [2*(q)+1])) + +#define C_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (ax [2*(q)+1])) + +#define C_MULT(x,z,p, ax,az,q, bx,bz,r) \ +x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ +x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] + +#define C_MULTADD(x,z,p, ax,az,q, bx,bz,r) \ +x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ +x [2*(p)+1] += ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] + +#define C_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \ +x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \ +x [2*(p)+1] -= ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] + +/* s += conj(a)*b */ +#define C_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \ +x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \ +x [2*(p)+1] += (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] + +/* s -= conj(a)*b */ +#define C_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \ +x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \ +x [2*(p)+1] -= (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1] + +#define C_ADD(x,z,p, ax,az,q, bx,bz,r) \ + x [2*(p) ] = ax [2*(q) ] + bx [2*(r) ] ; \ + x [2*(p)+1] = ax [2*(q)+1] + bx [2*(r)+1] + +#define C_ADD_REAL(x,p, ax,q, bx,r) \ + x [2*(p)] = ax [2*(q)] + bx [2*(r)] + +#define C_CLEAR(x,z,p) \ + x [2*(p) ] = 0 ; \ + x [2*(p)+1] = 0 + +#define C_CLEAR_IMAG(x,z,p) \ + x [2*(p)+1] = 0 + +/* s = s / a */ +#define C_DIV(x,z,p,ax,az,q) \ + Common->complex_divide ( \ + x [2*(p)], x [2*(p)+1], \ + ax [2*(q)], ax [2*(q)+1], \ + &x [2*(p)], &x [2*(p)+1]) + +/* s -= conj(a)*a ; note that the result of conj(a)*a is real */ +#define C_LLDOT(x,p, ax,az,q) \ + x [2*(p)] -= ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1] + +#define C_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [2*(p)], x [2*(p)+1])) + +#define C_DIV_REAL(x,z,p, ax,az,q, bx,r) \ + x [2*(p) ] = ax [2*(q) ] / bx [2*(r)] ; \ + x [2*(p)+1] = ax [2*(q)+1] / bx [2*(r)] + +#define C_MULT_REAL(x,z,p, ax,az,q, bx,r) \ + x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] ; \ + x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)] + +/* s -= conj(a)*a/t */ +#define C_LDLDOT(x,p, ax,az,q, bx,r) \ + x [2*(p)] -= (ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]) / bx[r] + +/* -------------------------------------------------------------------------- */ +/* zomplex */ +/* -------------------------------------------------------------------------- */ + +#define Z_TEMPLATE(name) z_ ## name +#define ZT_TEMPLATE(name) zt_ ## name + +#define Z_ASSEMBLE(x,z,p,ax,az,q) \ + x [p] += ax [q] ; \ + z [p] += az [q] + +#define Z_ASSIGN(x,z,p,ax,az,q) \ + x [p] = ax [q] ; \ + z [p] = az [q] + +#define Z_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q] + +#define Z_ASSIGN_CONJ(x,z,p,ax,az,q) \ + x [p] = ax [q] ; \ + z [p] = -az [q] + +#define Z_XTYPE_OK(type) ((type) == CHOLMOD_ZOMPLEX) + +#define Z_IS_NONZERO(ax,az,q) \ + (IS_NONZERO (ax [q]) || IS_NONZERO (az [q])) + +#define Z_IS_ZERO(ax,az,q) \ + (IS_ZERO (ax [q]) && IS_ZERO (az [q])) + +#define Z_IS_ONE(ax,az,q) \ + ((ax [q] == 1) && IS_ZERO (az [q])) + +#define Z_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (az [q])) + +#define Z_MULT(x,z,p, ax,az,q, bx,bz,r) \ + x [p] = ax [q] * bx [r] - az [q] * bz [r] ; \ + z [p] = az [q] * bx [r] + ax [q] * bz [r] + +#define Z_MULTADD(x,z,p, ax,az,q, bx,bz,r) \ + x [p] += ax [q] * bx [r] - az [q] * bz [r] ; \ + z [p] += az [q] * bx [r] + ax [q] * bz [r] + +#define Z_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \ + x [p] -= ax [q] * bx [r] - az [q] * bz [r] ; \ + z [p] -= az [q] * bx [r] + ax [q] * bz [r] + +#define Z_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \ + x [p] += ax [q] * bx [r] + az [q] * bz [r] ; \ + z [p] += (-az [q]) * bx [r] + ax [q] * bz [r] + +#define Z_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \ + x [p] -= ax [q] * bx [r] + az [q] * bz [r] ; \ + z [p] -= (-az [q]) * bx [r] + ax [q] * bz [r] + +#define Z_ADD(x,z,p, ax,az,q, bx,bz,r) \ + x [p] = ax [q] + bx [r] ; \ + z [p] = az [q] + bz [r] + +#define Z_ADD_REAL(x,p, ax,q, bx,r) \ + x [p] = ax [q] + bx [r] + +#define Z_CLEAR(x,z,p) \ + x [p] = 0 ; \ + z [p] = 0 + +#define Z_CLEAR_IMAG(x,z,p) \ + z [p] = 0 + +/* s = s/a */ +#define Z_DIV(x,z,p,ax,az,q) \ + Common->complex_divide (x [p], z [p], ax [q], az [q], &x [p], &z [p]) + +/* s -= conj(a)*a ; note that the result of conj(a)*a is real */ +#define Z_LLDOT(x,p, ax,az,q) \ + x [p] -= ax [q] * ax [q] + az [q] * az [q] + +#define Z_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [p], z [p])) + +#define Z_DIV_REAL(x,z,p, ax,az,q, bx,r) \ + x [p] = ax [q] / bx [r] ; \ + z [p] = az [q] / bx [r] + +#define Z_MULT_REAL(x,z,p, ax,az,q, bx,r) \ + x [p] = ax [q] * bx [r] ; \ + z [p] = az [q] * bx [r] + +/* s -= conj(a)*a/t */ +#define Z_LDLDOT(x,p, ax,az,q, bx,r) \ + x [p] -= (ax [q] * ax [q] + az [q] * az [q]) / bx[r] + +/* -------------------------------------------------------------------------- */ +/* all classes */ +/* -------------------------------------------------------------------------- */ + +/* Check if A->xtype and the two arrays A->x and A->z are valid. Set status to + * invalid, unless status is already "out of memory". A can be a sparse matrix, + * dense matrix, factor, or triplet. */ + +#define RETURN_IF_XTYPE_INVALID(A,xtype1,xtype2,result) \ +{ \ + if ((A)->xtype < (xtype1) || (A)->xtype > (xtype2) || \ + ((A)->xtype != CHOLMOD_PATTERN && ((A)->x) == NULL) || \ + ((A)->xtype == CHOLMOD_ZOMPLEX && ((A)->z) == NULL)) \ + { \ + if (Common->status != CHOLMOD_OUT_OF_MEMORY) \ + { \ + ERROR (CHOLMOD_INVALID, "invalid xtype") ; \ + } \ + return (result) ; \ + } \ +} |