summaryrefslogtreecommitdiff
path: root/usr/include/cholmod_complexity.h
diff options
context:
space:
mode:
authorShashank2017-05-29 12:40:26 +0530
committerShashank2017-05-29 12:40:26 +0530
commit0345245e860375a32c9a437c4a9d9cae807134e9 (patch)
treead51ecbfa7bcd3cc5f09834f1bb8c08feaa526a4 /usr/include/cholmod_complexity.h
downloadscilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.tar.gz
scilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.tar.bz2
scilab_for_xcos_on_cloud-0345245e860375a32c9a437c4a9d9cae807134e9.zip
CMSCOPE changed
Diffstat (limited to 'usr/include/cholmod_complexity.h')
-rwxr-xr-xusr/include/cholmod_complexity.h264
1 files changed, 264 insertions, 0 deletions
diff --git a/usr/include/cholmod_complexity.h b/usr/include/cholmod_complexity.h
new file mode 100755
index 000000000..a84583ab3
--- /dev/null
+++ b/usr/include/cholmod_complexity.h
@@ -0,0 +1,264 @@
+/* ========================================================================== */
+/* === Include/cholmod_complexity.h ========================================= */
+/* ========================================================================== */
+
+/* Define operations on pattern, real, complex, and zomplex objects.
+ *
+ * The xtype of an object defines it numerical type. A qttern object has no
+ * numerical values (A->x and A->z are NULL). A real object has no imaginary
+ * qrt (A->x is used, A->z is NULL). A complex object has an imaginary qrt
+ * that is stored interleaved with its real qrt (A->x is of size 2*nz, A->z
+ * is NULL). A zomplex object has both real and imaginary qrts, which are
+ * stored seqrately, as in MATLAB (A->x and A->z are both used).
+ *
+ * XTYPE is CHOLMOD_PATTERN, _REAL, _COMPLEX or _ZOMPLEX, and is the xtype of
+ * the template routine under construction. XTYPE2 is equal to XTYPE, except
+ * if XTYPE is CHOLMOD_PATTERN, in which case XTYPE is CHOLMOD_REAL.
+ * XTYPE and XTYPE2 are defined in cholmod_template.h.
+ */
+
+/* -------------------------------------------------------------------------- */
+/* pattern */
+/* -------------------------------------------------------------------------- */
+
+#define P_TEMPLATE(name) p_ ## name
+#define P_ASSIGN2(x,z,p,ax,az,q) x [p] = 1
+#define P_PRINT(k,x,z,p) PRK(k, ("1"))
+
+/* -------------------------------------------------------------------------- */
+/* real */
+/* -------------------------------------------------------------------------- */
+
+#define R_TEMPLATE(name) r_ ## name
+#define R_ASSEMBLE(x,z,p,ax,az,q) x [p] += ax [q]
+#define R_ASSIGN(x,z,p,ax,az,q) x [p] = ax [q]
+#define R_ASSIGN_CONJ(x,z,p,ax,az,q) x [p] = ax [q]
+#define R_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q]
+#define R_XTYPE_OK(type) ((type) == CHOLMOD_REAL)
+#define R_IS_NONZERO(ax,az,q) IS_NONZERO (ax [q])
+#define R_IS_ZERO(ax,az,q) IS_ZERO (ax [q])
+#define R_IS_ONE(ax,az,q) (ax [q] == 1)
+#define R_MULT(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] * bx [r]
+#define R_MULTADD(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r]
+#define R_MULTSUB(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r]
+#define R_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] += ax [q] * bx [r]
+#define R_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) x [p] -= ax [q] * bx [r]
+#define R_ADD(x,z,p, ax,az,q, bx,bz,r) x [p] = ax [q] + bx [r]
+#define R_ADD_REAL(x,p, ax,q, bx,r) x [p] = ax [q] + bx [r]
+#define R_CLEAR(x,z,p) x [p] = 0
+#define R_CLEAR_IMAG(x,z,p)
+#define R_DIV(x,z,p,ax,az,q) x [p] /= ax [q]
+#define R_LLDOT(x,p, ax,az,q) x [p] -= ax [q] * ax [q]
+#define R_PRINT(k,x,z,p) PRK(k, ("%24.16e", x [p]))
+
+#define R_DIV_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] / bx [r]
+#define R_MULT_REAL(x,z,p, ax,az,q, bx,r) x [p] = ax [q] * bx [r]
+
+#define R_LDLDOT(x,p, ax,az,q, bx,r) x [p] -=(ax[q] * ax[q])/ bx[r]
+
+/* -------------------------------------------------------------------------- */
+/* complex */
+/* -------------------------------------------------------------------------- */
+
+#define C_TEMPLATE(name) c_ ## name
+#define CT_TEMPLATE(name) ct_ ## name
+
+#define C_ASSEMBLE(x,z,p,ax,az,q) \
+ x [2*(p) ] += ax [2*(q) ] ; \
+ x [2*(p)+1] += ax [2*(q)+1]
+
+#define C_ASSIGN(x,z,p,ax,az,q) \
+ x [2*(p) ] = ax [2*(q) ] ; \
+ x [2*(p)+1] = ax [2*(q)+1]
+
+#define C_ASSIGN_REAL(x,p,ax,q) x [2*(p)] = ax [2*(q)]
+
+#define C_ASSIGN_CONJ(x,z,p,ax,az,q) \
+ x [2*(p) ] = ax [2*(q) ] ; \
+ x [2*(p)+1] = -ax [2*(q)+1]
+
+#define C_XTYPE_OK(type) ((type) == CHOLMOD_COMPLEX)
+
+#define C_IS_NONZERO(ax,az,q) \
+ (IS_NONZERO (ax [2*(q)]) || IS_NONZERO (ax [2*(q)+1]))
+
+#define C_IS_ZERO(ax,az,q) \
+ (IS_ZERO (ax [2*(q)]) && IS_ZERO (ax [2*(q)+1]))
+
+#define C_IS_ONE(ax,az,q) \
+ ((ax [2*(q)] == 1) && IS_ZERO (ax [2*(q)+1]))
+
+#define C_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (ax [2*(q)+1]))
+
+#define C_MULT(x,z,p, ax,az,q, bx,bz,r) \
+x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \
+x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1]
+
+#define C_MULTADD(x,z,p, ax,az,q, bx,bz,r) \
+x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \
+x [2*(p)+1] += ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1]
+
+#define C_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \
+x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] - ax [2*(q)+1] * bx [2*(r)+1] ; \
+x [2*(p)+1] -= ax [2*(q)+1] * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1]
+
+/* s += conj(a)*b */
+#define C_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \
+x [2*(p) ] += ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \
+x [2*(p)+1] += (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1]
+
+/* s -= conj(a)*b */
+#define C_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \
+x [2*(p) ] -= ax [2*(q) ] * bx [2*(r)] + ax [2*(q)+1] * bx [2*(r)+1] ; \
+x [2*(p)+1] -= (-ax [2*(q)+1]) * bx [2*(r)] + ax [2*(q) ] * bx [2*(r)+1]
+
+#define C_ADD(x,z,p, ax,az,q, bx,bz,r) \
+ x [2*(p) ] = ax [2*(q) ] + bx [2*(r) ] ; \
+ x [2*(p)+1] = ax [2*(q)+1] + bx [2*(r)+1]
+
+#define C_ADD_REAL(x,p, ax,q, bx,r) \
+ x [2*(p)] = ax [2*(q)] + bx [2*(r)]
+
+#define C_CLEAR(x,z,p) \
+ x [2*(p) ] = 0 ; \
+ x [2*(p)+1] = 0
+
+#define C_CLEAR_IMAG(x,z,p) \
+ x [2*(p)+1] = 0
+
+/* s = s / a */
+#define C_DIV(x,z,p,ax,az,q) \
+ Common->complex_divide ( \
+ x [2*(p)], x [2*(p)+1], \
+ ax [2*(q)], ax [2*(q)+1], \
+ &x [2*(p)], &x [2*(p)+1])
+
+/* s -= conj(a)*a ; note that the result of conj(a)*a is real */
+#define C_LLDOT(x,p, ax,az,q) \
+ x [2*(p)] -= ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]
+
+#define C_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [2*(p)], x [2*(p)+1]))
+
+#define C_DIV_REAL(x,z,p, ax,az,q, bx,r) \
+ x [2*(p) ] = ax [2*(q) ] / bx [2*(r)] ; \
+ x [2*(p)+1] = ax [2*(q)+1] / bx [2*(r)]
+
+#define C_MULT_REAL(x,z,p, ax,az,q, bx,r) \
+ x [2*(p) ] = ax [2*(q) ] * bx [2*(r)] ; \
+ x [2*(p)+1] = ax [2*(q)+1] * bx [2*(r)]
+
+/* s -= conj(a)*a/t */
+#define C_LDLDOT(x,p, ax,az,q, bx,r) \
+ x [2*(p)] -= (ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]) / bx[r]
+
+/* -------------------------------------------------------------------------- */
+/* zomplex */
+/* -------------------------------------------------------------------------- */
+
+#define Z_TEMPLATE(name) z_ ## name
+#define ZT_TEMPLATE(name) zt_ ## name
+
+#define Z_ASSEMBLE(x,z,p,ax,az,q) \
+ x [p] += ax [q] ; \
+ z [p] += az [q]
+
+#define Z_ASSIGN(x,z,p,ax,az,q) \
+ x [p] = ax [q] ; \
+ z [p] = az [q]
+
+#define Z_ASSIGN_REAL(x,p,ax,q) x [p] = ax [q]
+
+#define Z_ASSIGN_CONJ(x,z,p,ax,az,q) \
+ x [p] = ax [q] ; \
+ z [p] = -az [q]
+
+#define Z_XTYPE_OK(type) ((type) == CHOLMOD_ZOMPLEX)
+
+#define Z_IS_NONZERO(ax,az,q) \
+ (IS_NONZERO (ax [q]) || IS_NONZERO (az [q]))
+
+#define Z_IS_ZERO(ax,az,q) \
+ (IS_ZERO (ax [q]) && IS_ZERO (az [q]))
+
+#define Z_IS_ONE(ax,az,q) \
+ ((ax [q] == 1) && IS_ZERO (az [q]))
+
+#define Z_IMAG_IS_NONZERO(ax,az,q) (IS_NONZERO (az [q]))
+
+#define Z_MULT(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] = ax [q] * bx [r] - az [q] * bz [r] ; \
+ z [p] = az [q] * bx [r] + ax [q] * bz [r]
+
+#define Z_MULTADD(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] += ax [q] * bx [r] - az [q] * bz [r] ; \
+ z [p] += az [q] * bx [r] + ax [q] * bz [r]
+
+#define Z_MULTSUB(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] -= ax [q] * bx [r] - az [q] * bz [r] ; \
+ z [p] -= az [q] * bx [r] + ax [q] * bz [r]
+
+#define Z_MULTADDCONJ(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] += ax [q] * bx [r] + az [q] * bz [r] ; \
+ z [p] += (-az [q]) * bx [r] + ax [q] * bz [r]
+
+#define Z_MULTSUBCONJ(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] -= ax [q] * bx [r] + az [q] * bz [r] ; \
+ z [p] -= (-az [q]) * bx [r] + ax [q] * bz [r]
+
+#define Z_ADD(x,z,p, ax,az,q, bx,bz,r) \
+ x [p] = ax [q] + bx [r] ; \
+ z [p] = az [q] + bz [r]
+
+#define Z_ADD_REAL(x,p, ax,q, bx,r) \
+ x [p] = ax [q] + bx [r]
+
+#define Z_CLEAR(x,z,p) \
+ x [p] = 0 ; \
+ z [p] = 0
+
+#define Z_CLEAR_IMAG(x,z,p) \
+ z [p] = 0
+
+/* s = s/a */
+#define Z_DIV(x,z,p,ax,az,q) \
+ Common->complex_divide (x [p], z [p], ax [q], az [q], &x [p], &z [p])
+
+/* s -= conj(a)*a ; note that the result of conj(a)*a is real */
+#define Z_LLDOT(x,p, ax,az,q) \
+ x [p] -= ax [q] * ax [q] + az [q] * az [q]
+
+#define Z_PRINT(k,x,z,p) PRK(k, ("(%24.16e,%24.16e)", x [p], z [p]))
+
+#define Z_DIV_REAL(x,z,p, ax,az,q, bx,r) \
+ x [p] = ax [q] / bx [r] ; \
+ z [p] = az [q] / bx [r]
+
+#define Z_MULT_REAL(x,z,p, ax,az,q, bx,r) \
+ x [p] = ax [q] * bx [r] ; \
+ z [p] = az [q] * bx [r]
+
+/* s -= conj(a)*a/t */
+#define Z_LDLDOT(x,p, ax,az,q, bx,r) \
+ x [p] -= (ax [q] * ax [q] + az [q] * az [q]) / bx[r]
+
+/* -------------------------------------------------------------------------- */
+/* all classes */
+/* -------------------------------------------------------------------------- */
+
+/* Check if A->xtype and the two arrays A->x and A->z are valid. Set status to
+ * invalid, unless status is already "out of memory". A can be a sparse matrix,
+ * dense matrix, factor, or triplet. */
+
+#define RETURN_IF_XTYPE_INVALID(A,xtype1,xtype2,result) \
+{ \
+ if ((A)->xtype < (xtype1) || (A)->xtype > (xtype2) || \
+ ((A)->xtype != CHOLMOD_PATTERN && ((A)->x) == NULL) || \
+ ((A)->xtype == CHOLMOD_ZOMPLEX && ((A)->z) == NULL)) \
+ { \
+ if (Common->status != CHOLMOD_OUT_OF_MEMORY) \
+ { \
+ ERROR (CHOLMOD_INVALID, "invalid xtype") ; \
+ } \
+ return (result) ; \
+ } \
+}