1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/*
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008-2008 - INRIA - Bruno JOFRET
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
*/
#ifndef WITHOUT_BLAS
#include "blas.h"
#endif
#include "matrixMultiplication.h"
/*
** \brief Compute a multiplication for floats matrixes.
** \param in1 : input matrix.
** \param lines1 : lines of in1 matrix.
** \param columns1 : columns of in1 matrix.
** \param in2 : input arry.
** \param lines2 : lines of in2 matrix.
** \param columns2 : columns of in2 matrix.
** \param out : Matrix that contains the multiplication in1 * in2.
*/
void smulma(float *in1, int lines1, int columns1,
float *in2, int lines2, int columns2,
float *out)
{
int i = 0;
int k = 0;
float accu = 0;
/*
** How to convert 2 index matrixes to one.
** #define in1(a, b) in1[a+b*lines1]
** #define in2(c, d) in2[c+d*lines2]
*/
for (i = 0 ; i < lines1 * columns2 ; ++i)
{
accu = 0;
for (k = 0; k < columns1 ; ++k)
{
accu += in1[i % lines1 + k * lines1]
* in2[k + (i / lines1) * lines2];
}
out[i] = accu;
}
}
/*
** \brief Compute a multiplication for doubles matrixes.
** \param in1 : input matrix.
** \param lines1 : lines of in1 matrix.
** \param columns1 : columns of in1 matrix.
** \param in2 : input arry.
** \param lines2 : lines of in2 matrix.
** \param columns2 : columns of in2 matrix.
** \param out : Matrix that contains the multiplication in1 * in2.
*/
void dmulma(double *in1, int lines1, int columns1,
double *in2, int lines2, int columns2,
double *out)
{
#ifndef WITHOUT_BLAS
/*
** USES BLAS DGEMM FUNCTION.
*/
double One = 1;
double Zero = 0;
/* Cr <- 1*Ar*Br + 0*Cr */
dgemm_("N","N", &columns2, &columns2, &columns1, &One,
in1 , &lines1, in2, &lines2, &Zero, out, &columns2);
#else
/*
** DO NOT USE ANY BLAS FUNCTION.
*/
int i = 0;
int k = 0;
double accu = 0;
/*
** How to convert 2 index matrixes to one.
** #define in1(a, b) in1[a+b*lines1]
** #define in2(c, d) in2[c+d*lines2]
*/
for (i = 0 ; i < lines1 * columns2 ; ++i)
{
accu = 0;
for (k = 0; k < columns1 ; ++k)
{
accu += in1[i % lines1 + k * lines1]
* in2[k + (i / lines1) * lines2];
}
out[i] = accu;
}
#endif
}
/*
** \brief Compute a multiplication for floats complex matrixes.
** \param in1 : input matrix.
** \param lines1 : lines of in1 matrix.
** \param columns1 : columns of in1 matrix.
** \param in2 : input arry.
** \param lines2 : lines of in2 matrix.
** \param columns2 : columns of in2 matrix.
** \param out : Matrix that contains the multiplication in1 * in2.
*/
void cmulma(floatComplex *in1, int lines1, int columns1,
floatComplex *in2, int lines2, int columns2,
floatComplex *out)
{
int i = 0;
int k = 0;
floatComplex accu = FloatComplex(0, 0);
for (i = 0 ; i < lines1 * columns2 ; ++i)
{
accu = FloatComplex(0,0);
for (k = 0; k < columns1 ; ++k)
{
accu = cadds(accu,
ctimess(in1[i % lines1 + k *lines1] ,
in2[k + (i / lines1) *lines2] ));
}
out[i] = accu;
}
}
/*
** \brief Compute a multiplication for doubles matrixes.
** \param in1 : input matrix.
** \param lines1 : lines of in1 matrix.
** \param columns1 : columns of in1 matrix.
** \param in2 : input arry.
** \param lines2 : lines of in2 matrix.
** \param columns2 : columns of in2 matrix.
** \param out : Matrix that contains the multiplication in1 * in2.
*/
void zmulma(doubleComplex *in1, int lines1, int columns1,
doubleComplex *in2, int lines2, int columns2,
doubleComplex *out)
{
#ifndef WITHOUT_BLAS
/*
** USES BLAS DGEMM FUNCTION.
*/
int i = 0;
double One = 1;
double MinusOne = -1;
double Zero = 0;
double *in1Real = malloc((uint) lines1 * (uint) columns1 * sizeof(double));
double *in1Imag = malloc((uint) lines1 * (uint) columns1 * sizeof(double));
double *in2Real = malloc((uint) lines2 * (uint) columns2 * sizeof(double));
double *in2Imag = malloc((uint) lines2 * (uint) columns2 * sizeof(double));
double *RealOut = malloc((uint) lines1 * (uint) columns2 * sizeof(double));
double *ImagOut = malloc((uint) lines1 * (uint) columns2 * sizeof(double));
zreala(in1, lines1 * columns1, in1Real);
zreala(in2, lines2 * columns2, in2Real);
zimaga(in1, lines1 * columns1, in1Imag);
zimaga(in2, lines2 * columns2, in2Imag);
/* Cr <- 1*Ar*Br + 0*Cr */
dgemm_("N","N", &lines1, &columns2, &columns1, &One,
in1Real, &lines1, in2Real, &lines2, &Zero, RealOut, &lines1);
/* Cr <- -1*Ai*Bi + 1*Cr */
dgemm_("N","N", &lines1, &columns2, &columns1, &MinusOne,
in1Imag, &lines1, in2Imag, &lines2, &One, RealOut, &lines1);
/* Ci <- 1*Ar*Bi + 0*Ci */
dgemm_("N","N", &lines1, &columns2, &columns1, &One,
in1Real, &lines1, in2Imag, &lines2, &Zero, ImagOut, &lines1);
/* Ci <- 1*Ai*Br + 1*Ci */
dgemm_("N","N", &lines1, &columns2, &columns1, &One,
in1Imag, &lines1, in2Real, &lines2, &One, ImagOut, &lines1);
/* Now fill output matrix */
for(i = 0 ; i < lines1 * columns2 ; ++i)
{
out[i] = DoubleComplex(RealOut[i], ImagOut[i]);
}
/* FREE allocated variables */
free(in1Real);
free(in2Real);
free(in1Imag);
free(in2Imag);
free(RealOut);
free(ImagOut);
#else
/*
** DO NOT USE ANY BLAS FUNCTION.
*/
int i = 0;
int k = 0;
doubleComplex accu = DoubleComplex(0, 0);
for (i = 0 ; i < lines1 * columns2 ; ++i)
{
accu = DoubleComplex(0,0);
for (k = 0; k < columns1 ; ++k)
{
accu = zadds(accu,
ztimess(in1[i % lines1 + k *lines1] ,
in2[k + (i / lines1) *lines2] ));
}
out[i] = accu;
}
#endif
}
|