summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dsytrf.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dsytrf.f')
-rw-r--r--src/lib/lapack/dsytrf.f287
1 files changed, 0 insertions, 287 deletions
diff --git a/src/lib/lapack/dsytrf.f b/src/lib/lapack/dsytrf.f
deleted file mode 100644
index 43a31248..00000000
--- a/src/lib/lapack/dsytrf.f
+++ /dev/null
@@ -1,287 +0,0 @@
- SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
-* ..
-* .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DSYTRF computes the factorization of a real symmetric matrix A using
-* the Bunch-Kaufman diagonal pivoting method. The form of the
-* factorization is
-*
-* A = U*D*U**T or A = L*D*L**T
-*
-* where U (or L) is a product of permutation and unit upper (lower)
-* triangular matrices, and D is symmetric and block diagonal with
-* 1-by-1 and 2-by-2 diagonal blocks.
-*
-* This is the blocked version of the algorithm, calling Level 3 BLAS.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangle of A is stored;
-* = 'L': Lower triangle of A is stored.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the symmetric matrix A. If UPLO = 'U', the leading
-* N-by-N upper triangular part of A contains the upper
-* triangular part of the matrix A, and the strictly lower
-* triangular part of A is not referenced. If UPLO = 'L', the
-* leading N-by-N lower triangular part of A contains the lower
-* triangular part of the matrix A, and the strictly upper
-* triangular part of A is not referenced.
-*
-* On exit, the block diagonal matrix D and the multipliers used
-* to obtain the factor U or L (see below for further details).
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* IPIV (output) INTEGER array, dimension (N)
-* Details of the interchanges and the block structure of D.
-* If IPIV(k) > 0, then rows and columns k and IPIV(k) were
-* interchanged and D(k,k) is a 1-by-1 diagonal block.
-* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
-* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
-* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
-* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
-* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The length of WORK. LWORK >=1. For best performance
-* LWORK >= N*NB, where NB is the block size returned by ILAENV.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, D(i,i) is exactly zero. The factorization
-* has been completed, but the block diagonal matrix D is
-* exactly singular, and division by zero will occur if it
-* is used to solve a system of equations.
-*
-* Further Details
-* ===============
-*
-* If UPLO = 'U', then A = U*D*U', where
-* U = P(n)*U(n)* ... *P(k)U(k)* ...,
-* i.e., U is a product of terms P(k)*U(k), where k decreases from n to
-* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
-* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
-* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
-* that if the diagonal block D(k) is of order s (s = 1 or 2), then
-*
-* ( I v 0 ) k-s
-* U(k) = ( 0 I 0 ) s
-* ( 0 0 I ) n-k
-* k-s s n-k
-*
-* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
-* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
-* and A(k,k), and v overwrites A(1:k-2,k-1:k).
-*
-* If UPLO = 'L', then A = L*D*L', where
-* L = P(1)*L(1)* ... *P(k)*L(k)* ...,
-* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
-* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
-* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
-* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
-* that if the diagonal block D(k) is of order s (s = 1 or 2), then
-*
-* ( I 0 0 ) k-1
-* L(k) = ( 0 I 0 ) s
-* ( 0 v I ) n-k-s+1
-* k-1 s n-k-s+1
-*
-* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
-* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
-* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
-* ..
-* .. External Subroutines ..
- EXTERNAL DLASYF, DSYTF2, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters.
-*
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -7
- END IF
-*
- IF( INFO.EQ.0 ) THEN
-*
-* Determine the block size
-*
- NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYTRF', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
- NBMIN = 2
- LDWORK = N
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- NB = MAX( LWORK / LDWORK, 1 )
- NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF', UPLO, N, -1, -1, -1 ) )
- END IF
- ELSE
- IWS = 1
- END IF
- IF( NB.LT.NBMIN )
- $ NB = N
-*
- IF( UPPER ) THEN
-*
-* Factorize A as U*D*U' using the upper triangle of A
-*
-* K is the main loop index, decreasing from N to 1 in steps of
-* KB, where KB is the number of columns factorized by DLASYF;
-* KB is either NB or NB-1, or K for the last block
-*
- K = N
- 10 CONTINUE
-*
-* If K < 1, exit from loop
-*
- IF( K.LT.1 )
- $ GO TO 40
-*
- IF( K.GT.NB ) THEN
-*
-* Factorize columns k-kb+1:k of A and use blocked code to
-* update columns 1:k-kb
-*
- CALL DLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, LDWORK,
- $ IINFO )
- ELSE
-*
-* Use unblocked code to factorize columns 1:k of A
-*
- CALL DSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
- KB = K
- END IF
-*
-* Set INFO on the first occurrence of a zero pivot
-*
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO
-*
-* Decrease K and return to the start of the main loop
-*
- K = K - KB
- GO TO 10
-*
- ELSE
-*
-* Factorize A as L*D*L' using the lower triangle of A
-*
-* K is the main loop index, increasing from 1 to N in steps of
-* KB, where KB is the number of columns factorized by DLASYF;
-* KB is either NB or NB-1, or N-K+1 for the last block
-*
- K = 1
- 20 CONTINUE
-*
-* If K > N, exit from loop
-*
- IF( K.GT.N )
- $ GO TO 40
-*
- IF( K.LE.N-NB ) THEN
-*
-* Factorize columns k:k+kb-1 of A and use blocked code to
-* update columns k+kb:n
-*
- CALL DLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
- $ WORK, LDWORK, IINFO )
- ELSE
-*
-* Use unblocked code to factorize columns k:n of A
-*
- CALL DSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
- KB = N - K + 1
- END IF
-*
-* Set INFO on the first occurrence of a zero pivot
-*
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + K - 1
-*
-* Adjust IPIV
-*
- DO 30 J = K, K + KB - 1
- IF( IPIV( J ).GT.0 ) THEN
- IPIV( J ) = IPIV( J ) + K - 1
- ELSE
- IPIV( J ) = IPIV( J ) - K + 1
- END IF
- 30 CONTINUE
-*
-* Increase K and return to the start of the main loop
-*
- K = K + KB
- GO TO 20
-*
- END IF
-*
- 40 CONTINUE
- WORK( 1 ) = LWKOPT
- RETURN
-*
-* End of DSYTRF
-*
- END