summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dsyev.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dsyev.f')
-rw-r--r--src/lib/lapack/dsyev.f211
1 files changed, 0 insertions, 211 deletions
diff --git a/src/lib/lapack/dsyev.f b/src/lib/lapack/dsyev.f
deleted file mode 100644
index d73600a2..00000000
--- a/src/lib/lapack/dsyev.f
+++ /dev/null
@@ -1,211 +0,0 @@
- SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, LDA, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DSYEV computes all eigenvalues and, optionally, eigenvectors of a
-* real symmetric matrix A.
-*
-* Arguments
-* =========
-*
-* JOBZ (input) CHARACTER*1
-* = 'N': Compute eigenvalues only;
-* = 'V': Compute eigenvalues and eigenvectors.
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangle of A is stored;
-* = 'L': Lower triangle of A is stored.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
-* On entry, the symmetric matrix A. If UPLO = 'U', the
-* leading N-by-N upper triangular part of A contains the
-* upper triangular part of the matrix A. If UPLO = 'L',
-* the leading N-by-N lower triangular part of A contains
-* the lower triangular part of the matrix A.
-* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
-* orthonormal eigenvectors of the matrix A.
-* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
-* or the upper triangle (if UPLO='U') of A, including the
-* diagonal, is destroyed.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* W (output) DOUBLE PRECISION array, dimension (N)
-* If INFO = 0, the eigenvalues in ascending order.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The length of the array WORK. LWORK >= max(1,3*N-1).
-* For optimal efficiency, LWORK >= (NB+2)*N,
-* where NB is the blocksize for DSYTRD returned by ILAENV.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, the algorithm failed to converge; i
-* off-diagonal elements of an intermediate tridiagonal
-* form did not converge to zero.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LOWER, LQUERY, WANTZ
- INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
- $ LLWORK, LWKOPT, NB
- DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANSY
- EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
-* ..
-* .. External Subroutines ..
- EXTERNAL DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
- $ XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters.
-*
- WANTZ = LSAME( JOBZ, 'V' )
- LOWER = LSAME( UPLO, 'L' )
- LQUERY = ( LWORK.EQ.-1 )
-*
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
-*
- IF( INFO.EQ.0 ) THEN
- NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
- LWKOPT = MAX( 1, ( NB+2 )*N )
- WORK( 1 ) = LWKOPT
-*
- IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
- $ INFO = -8
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYEV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.EQ.0 ) THEN
- RETURN
- END IF
-*
- IF( N.EQ.1 ) THEN
- W( 1 ) = A( 1, 1 )
- WORK( 1 ) = 2
- IF( WANTZ )
- $ A( 1, 1 ) = ONE
- RETURN
- END IF
-*
-* Get machine constants.
-*
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
-*
-* Scale matrix to allowable range, if necessary.
-*
- ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 )
- $ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
-*
-* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
-*
- INDE = 1
- INDTAU = INDE + N
- INDWRK = INDTAU + N
- LLWORK = LWORK - INDWRK + 1
- CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
- $ WORK( INDWRK ), LLWORK, IINFO )
-*
-* For eigenvalues only, call DSTERF. For eigenvectors, first call
-* DORGTR to generate the orthogonal matrix, then call DSTEQR.
-*
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, W, WORK( INDE ), INFO )
- ELSE
- CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
- $ LLWORK, IINFO )
- CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
- $ INFO )
- END IF
-*
-* If matrix was scaled, then rescale eigenvalues appropriately.
-*
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = N
- ELSE
- IMAX = INFO - 1
- END IF
- CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
-*
-* Set WORK(1) to optimal workspace size.
-*
- WORK( 1 ) = LWKOPT
-*
- RETURN
-*
-* End of DSYEV
-*
- END