summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dlaqr3.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dlaqr3.f')
-rw-r--r--src/lib/lapack/dlaqr3.f561
1 files changed, 0 insertions, 561 deletions
diff --git a/src/lib/lapack/dlaqr3.f b/src/lib/lapack/dlaqr3.f
deleted file mode 100644
index 877b267a..00000000
--- a/src/lib/lapack/dlaqr3.f
+++ /dev/null
@@ -1,561 +0,0 @@
- SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- $ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
- $ LDT, NV, WV, LDWV, WORK, LWORK )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
- $ LDZ, LWORK, N, ND, NH, NS, NV, NW
- LOGICAL WANTT, WANTZ
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
- $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
- $ Z( LDZ, * )
-* ..
-*
-* ******************************************************************
-* Aggressive early deflation:
-*
-* This subroutine accepts as input an upper Hessenberg matrix
-* H and performs an orthogonal similarity transformation
-* designed to detect and deflate fully converged eigenvalues from
-* a trailing principal submatrix. On output H has been over-
-* written by a new Hessenberg matrix that is a perturbation of
-* an orthogonal similarity transformation of H. It is to be
-* hoped that the final version of H has many zero subdiagonal
-* entries.
-*
-* ******************************************************************
-* WANTT (input) LOGICAL
-* If .TRUE., then the Hessenberg matrix H is fully updated
-* so that the quasi-triangular Schur factor may be
-* computed (in cooperation with the calling subroutine).
-* If .FALSE., then only enough of H is updated to preserve
-* the eigenvalues.
-*
-* WANTZ (input) LOGICAL
-* If .TRUE., then the orthogonal matrix Z is updated so
-* so that the orthogonal Schur factor may be computed
-* (in cooperation with the calling subroutine).
-* If .FALSE., then Z is not referenced.
-*
-* N (input) INTEGER
-* The order of the matrix H and (if WANTZ is .TRUE.) the
-* order of the orthogonal matrix Z.
-*
-* KTOP (input) INTEGER
-* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
-* KBOT and KTOP together determine an isolated block
-* along the diagonal of the Hessenberg matrix.
-*
-* KBOT (input) INTEGER
-* It is assumed without a check that either
-* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
-* determine an isolated block along the diagonal of the
-* Hessenberg matrix.
-*
-* NW (input) INTEGER
-* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
-*
-* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
-* On input the initial N-by-N section of H stores the
-* Hessenberg matrix undergoing aggressive early deflation.
-* On output H has been transformed by an orthogonal
-* similarity transformation, perturbed, and the returned
-* to Hessenberg form that (it is to be hoped) has some
-* zero subdiagonal entries.
-*
-* LDH (input) integer
-* Leading dimension of H just as declared in the calling
-* subroutine. N .LE. LDH
-*
-* ILOZ (input) INTEGER
-* IHIZ (input) INTEGER
-* Specify the rows of Z to which transformations must be
-* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
-*
-* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
-* IF WANTZ is .TRUE., then on output, the orthogonal
-* similarity transformation mentioned above has been
-* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
-* If WANTZ is .FALSE., then Z is unreferenced.
-*
-* LDZ (input) integer
-* The leading dimension of Z just as declared in the
-* calling subroutine. 1 .LE. LDZ.
-*
-* NS (output) integer
-* The number of unconverged (ie approximate) eigenvalues
-* returned in SR and SI that may be used as shifts by the
-* calling subroutine.
-*
-* ND (output) integer
-* The number of converged eigenvalues uncovered by this
-* subroutine.
-*
-* SR (output) DOUBLE PRECISION array, dimension KBOT
-* SI (output) DOUBLE PRECISION array, dimension KBOT
-* On output, the real and imaginary parts of approximate
-* eigenvalues that may be used for shifts are stored in
-* SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
-* SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
-* The real and imaginary parts of converged eigenvalues
-* are stored in SR(KBOT-ND+1) through SR(KBOT) and
-* SI(KBOT-ND+1) through SI(KBOT), respectively.
-*
-* V (workspace) DOUBLE PRECISION array, dimension (LDV,NW)
-* An NW-by-NW work array.
-*
-* LDV (input) integer scalar
-* The leading dimension of V just as declared in the
-* calling subroutine. NW .LE. LDV
-*
-* NH (input) integer scalar
-* The number of columns of T. NH.GE.NW.
-*
-* T (workspace) DOUBLE PRECISION array, dimension (LDT,NW)
-*
-* LDT (input) integer
-* The leading dimension of T just as declared in the
-* calling subroutine. NW .LE. LDT
-*
-* NV (input) integer
-* The number of rows of work array WV available for
-* workspace. NV.GE.NW.
-*
-* WV (workspace) DOUBLE PRECISION array, dimension (LDWV,NW)
-*
-* LDWV (input) integer
-* The leading dimension of W just as declared in the
-* calling subroutine. NW .LE. LDV
-*
-* WORK (workspace) DOUBLE PRECISION array, dimension LWORK.
-* On exit, WORK(1) is set to an estimate of the optimal value
-* of LWORK for the given values of N, NW, KTOP and KBOT.
-*
-* LWORK (input) integer
-* The dimension of the work array WORK. LWORK = 2*NW
-* suffices, but greater efficiency may result from larger
-* values of LWORK.
-*
-* If LWORK = -1, then a workspace query is assumed; DLAQR3
-* only estimates the optimal workspace size for the given
-* values of N, NW, KTOP and KBOT. The estimate is returned
-* in WORK(1). No error message related to LWORK is issued
-* by XERBLA. Neither H nor Z are accessed.
-*
-* ================================================================
-* Based on contributions by
-* Karen Braman and Ralph Byers, Department of Mathematics,
-* University of Kansas, USA
-*
-* ==================================================================
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
- $ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
- INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
- $ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
- $ LWKOPT, NMIN
- LOGICAL BULGE, SORTED
-* ..
-* .. External Functions ..
- DOUBLE PRECISION DLAMCH
- INTEGER ILAENV
- EXTERNAL DLAMCH, ILAENV
-* ..
-* .. External Subroutines ..
- EXTERNAL DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
- $ DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORGHR,
- $ DTREXC
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, INT, MAX, MIN, SQRT
-* ..
-* .. Executable Statements ..
-*
-* ==== Estimate optimal workspace. ====
-*
- JW = MIN( NW, KBOT-KTOP+1 )
- IF( JW.LE.2 ) THEN
- LWKOPT = 1
- ELSE
-*
-* ==== Workspace query call to DGEHRD ====
-*
- CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
- LWK1 = INT( WORK( 1 ) )
-*
-* ==== Workspace query call to DORGHR ====
-*
- CALL DORGHR( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
- LWK2 = INT( WORK( 1 ) )
-*
-* ==== Workspace query call to DLAQR4 ====
-*
- CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW,
- $ V, LDV, WORK, -1, INFQR )
- LWK3 = INT( WORK( 1 ) )
-*
-* ==== Optimal workspace ====
-*
- LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
- END IF
-*
-* ==== Quick return in case of workspace query. ====
-*
- IF( LWORK.EQ.-1 ) THEN
- WORK( 1 ) = DBLE( LWKOPT )
- RETURN
- END IF
-*
-* ==== Nothing to do ...
-* ... for an empty active block ... ====
- NS = 0
- ND = 0
- IF( KTOP.GT.KBOT )
- $ RETURN
-* ... nor for an empty deflation window. ====
- IF( NW.LT.1 )
- $ RETURN
-*
-* ==== Machine constants ====
-*
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULP = DLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( DBLE( N ) / ULP )
-*
-* ==== Setup deflation window ====
-*
- JW = MIN( NW, KBOT-KTOP+1 )
- KWTOP = KBOT - JW + 1
- IF( KWTOP.EQ.KTOP ) THEN
- S = ZERO
- ELSE
- S = H( KWTOP, KWTOP-1 )
- END IF
-*
- IF( KBOT.EQ.KWTOP ) THEN
-*
-* ==== 1-by-1 deflation window: not much to do ====
-*
- SR( KWTOP ) = H( KWTOP, KWTOP )
- SI( KWTOP ) = ZERO
- NS = 1
- ND = 0
- IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
- $ THEN
- NS = 0
- ND = 1
- IF( KWTOP.GT.KTOP )
- $ H( KWTOP, KWTOP-1 ) = ZERO
- END IF
- RETURN
- END IF
-*
-* ==== Convert to spike-triangular form. (In case of a
-* . rare QR failure, this routine continues to do
-* . aggressive early deflation using that part of
-* . the deflation window that converged using INFQR
-* . here and there to keep track.) ====
-*
- CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
- CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
-*
- CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
- NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
- IF( JW.GT.NMIN ) THEN
- CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
- $ SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
- ELSE
- CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
- $ SI( KWTOP ), 1, JW, V, LDV, INFQR )
- END IF
-*
-* ==== DTREXC needs a clean margin near the diagonal ====
-*
- DO 10 J = 1, JW - 3
- T( J+2, J ) = ZERO
- T( J+3, J ) = ZERO
- 10 CONTINUE
- IF( JW.GT.2 )
- $ T( JW, JW-2 ) = ZERO
-*
-* ==== Deflation detection loop ====
-*
- NS = JW
- ILST = INFQR + 1
- 20 CONTINUE
- IF( ILST.LE.NS ) THEN
- IF( NS.EQ.1 ) THEN
- BULGE = .FALSE.
- ELSE
- BULGE = T( NS, NS-1 ).NE.ZERO
- END IF
-*
-* ==== Small spike tip test for deflation ====
-*
- IF( .NOT.BULGE ) THEN
-*
-* ==== Real eigenvalue ====
-*
- FOO = ABS( T( NS, NS ) )
- IF( FOO.EQ.ZERO )
- $ FOO = ABS( S )
- IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
-*
-* ==== Deflatable ====
-*
- NS = NS - 1
- ELSE
-*
-* ==== Undeflatable. Move it up out of the way.
-* . (DTREXC can not fail in this case.) ====
-*
- IFST = NS
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- ILST = ILST + 1
- END IF
- ELSE
-*
-* ==== Complex conjugate pair ====
-*
- FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
- $ SQRT( ABS( T( NS-1, NS ) ) )
- IF( FOO.EQ.ZERO )
- $ FOO = ABS( S )
- IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
- $ MAX( SMLNUM, ULP*FOO ) ) THEN
-*
-* ==== Deflatable ====
-*
- NS = NS - 2
- ELSE
-*
-* ==== Undflatable. Move them up out of the way.
-* . Fortunately, DTREXC does the right thing with
-* . ILST in case of a rare exchange failure. ====
-*
- IFST = NS
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- ILST = ILST + 2
- END IF
- END IF
-*
-* ==== End deflation detection loop ====
-*
- GO TO 20
- END IF
-*
-* ==== Return to Hessenberg form ====
-*
- IF( NS.EQ.0 )
- $ S = ZERO
-*
- IF( NS.LT.JW ) THEN
-*
-* ==== sorting diagonal blocks of T improves accuracy for
-* . graded matrices. Bubble sort deals well with
-* . exchange failures. ====
-*
- SORTED = .false.
- I = NS + 1
- 30 CONTINUE
- IF( SORTED )
- $ GO TO 50
- SORTED = .true.
-*
- KEND = I - 1
- I = INFQR + 1
- IF( I.EQ.NS ) THEN
- K = I + 1
- ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
- K = I + 1
- ELSE
- K = I + 2
- END IF
- 40 CONTINUE
- IF( K.LE.KEND ) THEN
- IF( K.EQ.I+1 ) THEN
- EVI = ABS( T( I, I ) )
- ELSE
- EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
- $ SQRT( ABS( T( I, I+1 ) ) )
- END IF
-*
- IF( K.EQ.KEND ) THEN
- EVK = ABS( T( K, K ) )
- ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
- EVK = ABS( T( K, K ) )
- ELSE
- EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
- $ SQRT( ABS( T( K, K+1 ) ) )
- END IF
-*
- IF( EVI.GE.EVK ) THEN
- I = K
- ELSE
- SORTED = .false.
- IFST = I
- ILST = K
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- IF( INFO.EQ.0 ) THEN
- I = ILST
- ELSE
- I = K
- END IF
- END IF
- IF( I.EQ.KEND ) THEN
- K = I + 1
- ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
- K = I + 1
- ELSE
- K = I + 2
- END IF
- GO TO 40
- END IF
- GO TO 30
- 50 CONTINUE
- END IF
-*
-* ==== Restore shift/eigenvalue array from T ====
-*
- I = JW
- 60 CONTINUE
- IF( I.GE.INFQR+1 ) THEN
- IF( I.EQ.INFQR+1 ) THEN
- SR( KWTOP+I-1 ) = T( I, I )
- SI( KWTOP+I-1 ) = ZERO
- I = I - 1
- ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
- SR( KWTOP+I-1 ) = T( I, I )
- SI( KWTOP+I-1 ) = ZERO
- I = I - 1
- ELSE
- AA = T( I-1, I-1 )
- CC = T( I, I-1 )
- BB = T( I-1, I )
- DD = T( I, I )
- CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
- $ SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
- $ SI( KWTOP+I-1 ), CS, SN )
- I = I - 2
- END IF
- GO TO 60
- END IF
-*
- IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
- IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
-*
-* ==== Reflect spike back into lower triangle ====
-*
- CALL DCOPY( NS, V, LDV, WORK, 1 )
- BETA = WORK( 1 )
- CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
- WORK( 1 ) = ONE
-*
- CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
-*
- CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
- $ WORK( JW+1 ) )
- CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
- $ WORK( JW+1 ) )
- CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
- $ WORK( JW+1 ) )
-*
- CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
- $ LWORK-JW, INFO )
- END IF
-*
-* ==== Copy updated reduced window into place ====
-*
- IF( KWTOP.GT.1 )
- $ H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
- CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
- CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
- $ LDH+1 )
-*
-* ==== Accumulate orthogonal matrix in order update
-* . H and Z, if requested. (A modified version
-* . of DORGHR that accumulates block Householder
-* . transformations into V directly might be
-* . marginally more efficient than the following.) ====
-*
- IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
- CALL DORGHR( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
- $ LWORK-JW, INFO )
- CALL DGEMM( 'N', 'N', JW, NS, NS, ONE, V, LDV, T, LDT, ZERO,
- $ WV, LDWV )
- CALL DLACPY( 'A', JW, NS, WV, LDWV, V, LDV )
- END IF
-*
-* ==== Update vertical slab in H ====
-*
- IF( WANTT ) THEN
- LTOP = 1
- ELSE
- LTOP = KTOP
- END IF
- DO 70 KROW = LTOP, KWTOP - 1, NV
- KLN = MIN( NV, KWTOP-KROW )
- CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
- $ LDH, V, LDV, ZERO, WV, LDWV )
- CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
- 70 CONTINUE
-*
-* ==== Update horizontal slab in H ====
-*
- IF( WANTT ) THEN
- DO 80 KCOL = KBOT + 1, N, NH
- KLN = MIN( NH, N-KCOL+1 )
- CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
- $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
- CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
- $ LDH )
- 80 CONTINUE
- END IF
-*
-* ==== Update vertical slab in Z ====
-*
- IF( WANTZ ) THEN
- DO 90 KROW = ILOZ, IHIZ, NV
- KLN = MIN( NV, IHIZ-KROW+1 )
- CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
- $ LDZ, V, LDV, ZERO, WV, LDWV )
- CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
- $ LDZ )
- 90 CONTINUE
- END IF
- END IF
-*
-* ==== Return the number of deflations ... ====
-*
- ND = JW - NS
-*
-* ==== ... and the number of shifts. (Subtracting
-* . INFQR from the spike length takes care
-* . of the case of a rare QR failure while
-* . calculating eigenvalues of the deflation
-* . window.) ====
-*
- NS = NS - INFQR
-*
-* ==== Return optimal workspace. ====
-*
- WORK( 1 ) = DBLE( LWKOPT )
-*
-* ==== End of DLAQR3 ====
-*
- END