diff options
Diffstat (limited to 'src/lib/lapack/dlantr.f')
-rw-r--r-- | src/lib/lapack/dlantr.f | 276 |
1 files changed, 0 insertions, 276 deletions
diff --git a/src/lib/lapack/dlantr.f b/src/lib/lapack/dlantr.f deleted file mode 100644 index 92debd3d..00000000 --- a/src/lib/lapack/dlantr.f +++ /dev/null @@ -1,276 +0,0 @@ - DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA, - $ WORK ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER DIAG, NORM, UPLO - INTEGER LDA, M, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DLANTR returns the value of the one norm, or the Frobenius norm, or -* the infinity norm, or the element of largest absolute value of a -* trapezoidal or triangular matrix A. -* -* Description -* =========== -* -* DLANTR returns the value -* -* DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' -* ( -* ( norm1(A), NORM = '1', 'O' or 'o' -* ( -* ( normI(A), NORM = 'I' or 'i' -* ( -* ( normF(A), NORM = 'F', 'f', 'E' or 'e' -* -* where norm1 denotes the one norm of a matrix (maximum column sum), -* normI denotes the infinity norm of a matrix (maximum row sum) and -* normF denotes the Frobenius norm of a matrix (square root of sum of -* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies the value to be returned in DLANTR as described -* above. -* -* UPLO (input) CHARACTER*1 -* Specifies whether the matrix A is upper or lower trapezoidal. -* = 'U': Upper trapezoidal -* = 'L': Lower trapezoidal -* Note that A is triangular instead of trapezoidal if M = N. -* -* DIAG (input) CHARACTER*1 -* Specifies whether or not the matrix A has unit diagonal. -* = 'N': Non-unit diagonal -* = 'U': Unit diagonal -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0, and if -* UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero. -* -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0, and if -* UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero. -* -* A (input) DOUBLE PRECISION array, dimension (LDA,N) -* The trapezoidal matrix A (A is triangular if M = N). -* If UPLO = 'U', the leading m by n upper trapezoidal part of -* the array A contains the upper trapezoidal matrix, and the -* strictly lower triangular part of A is not referenced. -* If UPLO = 'L', the leading m by n lower trapezoidal part of -* the array A contains the lower trapezoidal matrix, and the -* strictly upper triangular part of A is not referenced. Note -* that when DIAG = 'U', the diagonal elements of A are not -* referenced and are assumed to be one. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(M,1). -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), -* where LWORK >= M when NORM = 'I'; otherwise, WORK is not -* referenced. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ONE, ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL UDIAG - INTEGER I, J - DOUBLE PRECISION SCALE, SUM, VALUE -* .. -* .. External Subroutines .. - EXTERNAL DLASSQ -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN, SQRT -* .. -* .. Executable Statements .. -* - IF( MIN( M, N ).EQ.0 ) THEN - VALUE = ZERO - ELSE IF( LSAME( NORM, 'M' ) ) THEN -* -* Find max(abs(A(i,j))). -* - IF( LSAME( DIAG, 'U' ) ) THEN - VALUE = ONE - IF( LSAME( UPLO, 'U' ) ) THEN - DO 20 J = 1, N - DO 10 I = 1, MIN( M, J-1 ) - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 10 CONTINUE - 20 CONTINUE - ELSE - DO 40 J = 1, N - DO 30 I = J + 1, M - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE - VALUE = ZERO - IF( LSAME( UPLO, 'U' ) ) THEN - DO 60 J = 1, N - DO 50 I = 1, MIN( M, J ) - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 50 CONTINUE - 60 CONTINUE - ELSE - DO 80 J = 1, N - DO 70 I = J, M - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 70 CONTINUE - 80 CONTINUE - END IF - END IF - ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN -* -* Find norm1(A). -* - VALUE = ZERO - UDIAG = LSAME( DIAG, 'U' ) - IF( LSAME( UPLO, 'U' ) ) THEN - DO 110 J = 1, N - IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN - SUM = ONE - DO 90 I = 1, J - 1 - SUM = SUM + ABS( A( I, J ) ) - 90 CONTINUE - ELSE - SUM = ZERO - DO 100 I = 1, MIN( M, J ) - SUM = SUM + ABS( A( I, J ) ) - 100 CONTINUE - END IF - VALUE = MAX( VALUE, SUM ) - 110 CONTINUE - ELSE - DO 140 J = 1, N - IF( UDIAG ) THEN - SUM = ONE - DO 120 I = J + 1, M - SUM = SUM + ABS( A( I, J ) ) - 120 CONTINUE - ELSE - SUM = ZERO - DO 130 I = J, M - SUM = SUM + ABS( A( I, J ) ) - 130 CONTINUE - END IF - VALUE = MAX( VALUE, SUM ) - 140 CONTINUE - END IF - ELSE IF( LSAME( NORM, 'I' ) ) THEN -* -* Find normI(A). -* - IF( LSAME( UPLO, 'U' ) ) THEN - IF( LSAME( DIAG, 'U' ) ) THEN - DO 150 I = 1, M - WORK( I ) = ONE - 150 CONTINUE - DO 170 J = 1, N - DO 160 I = 1, MIN( M, J-1 ) - WORK( I ) = WORK( I ) + ABS( A( I, J ) ) - 160 CONTINUE - 170 CONTINUE - ELSE - DO 180 I = 1, M - WORK( I ) = ZERO - 180 CONTINUE - DO 200 J = 1, N - DO 190 I = 1, MIN( M, J ) - WORK( I ) = WORK( I ) + ABS( A( I, J ) ) - 190 CONTINUE - 200 CONTINUE - END IF - ELSE - IF( LSAME( DIAG, 'U' ) ) THEN - DO 210 I = 1, N - WORK( I ) = ONE - 210 CONTINUE - DO 220 I = N + 1, M - WORK( I ) = ZERO - 220 CONTINUE - DO 240 J = 1, N - DO 230 I = J + 1, M - WORK( I ) = WORK( I ) + ABS( A( I, J ) ) - 230 CONTINUE - 240 CONTINUE - ELSE - DO 250 I = 1, M - WORK( I ) = ZERO - 250 CONTINUE - DO 270 J = 1, N - DO 260 I = J, M - WORK( I ) = WORK( I ) + ABS( A( I, J ) ) - 260 CONTINUE - 270 CONTINUE - END IF - END IF - VALUE = ZERO - DO 280 I = 1, M - VALUE = MAX( VALUE, WORK( I ) ) - 280 CONTINUE - ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN -* -* Find normF(A). -* - IF( LSAME( UPLO, 'U' ) ) THEN - IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = MIN( M, N ) - DO 290 J = 2, N - CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM ) - 290 CONTINUE - ELSE - SCALE = ZERO - SUM = ONE - DO 300 J = 1, N - CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM ) - 300 CONTINUE - END IF - ELSE - IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = MIN( M, N ) - DO 310 J = 1, N - CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE, - $ SUM ) - 310 CONTINUE - ELSE - SCALE = ZERO - SUM = ONE - DO 320 J = 1, N - CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM ) - 320 CONTINUE - END IF - END IF - VALUE = SCALE*SQRT( SUM ) - END IF -* - DLANTR = VALUE - RETURN -* -* End of DLANTR -* - END |