diff options
Diffstat (limited to 'src/lib/lapack/dlansy.f')
-rw-r--r-- | src/lib/lapack/dlansy.f | 173 |
1 files changed, 0 insertions, 173 deletions
diff --git a/src/lib/lapack/dlansy.f b/src/lib/lapack/dlansy.f deleted file mode 100644 index b6c727c0..00000000 --- a/src/lib/lapack/dlansy.f +++ /dev/null @@ -1,173 +0,0 @@ - DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER NORM, UPLO - INTEGER LDA, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DLANSY returns the value of the one norm, or the Frobenius norm, or -* the infinity norm, or the element of largest absolute value of a -* real symmetric matrix A. -* -* Description -* =========== -* -* DLANSY returns the value -* -* DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' -* ( -* ( norm1(A), NORM = '1', 'O' or 'o' -* ( -* ( normI(A), NORM = 'I' or 'i' -* ( -* ( normF(A), NORM = 'F', 'f', 'E' or 'e' -* -* where norm1 denotes the one norm of a matrix (maximum column sum), -* normI denotes the infinity norm of a matrix (maximum row sum) and -* normF denotes the Frobenius norm of a matrix (square root of sum of -* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies the value to be returned in DLANSY as described -* above. -* -* UPLO (input) CHARACTER*1 -* Specifies whether the upper or lower triangular part of the -* symmetric matrix A is to be referenced. -* = 'U': Upper triangular part of A is referenced -* = 'L': Lower triangular part of A is referenced -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. When N = 0, DLANSY is -* set to zero. -* -* A (input) DOUBLE PRECISION array, dimension (LDA,N) -* The symmetric matrix A. If UPLO = 'U', the leading n by n -* upper triangular part of A contains the upper triangular part -* of the matrix A, and the strictly lower triangular part of A -* is not referenced. If UPLO = 'L', the leading n by n lower -* triangular part of A contains the lower triangular part of -* the matrix A, and the strictly upper triangular part of A is -* not referenced. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(N,1). -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), -* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, -* WORK is not referenced. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ONE, ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Local Scalars .. - INTEGER I, J - DOUBLE PRECISION ABSA, SCALE, SUM, VALUE -* .. -* .. External Subroutines .. - EXTERNAL DLASSQ -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, SQRT -* .. -* .. Executable Statements .. -* - IF( N.EQ.0 ) THEN - VALUE = ZERO - ELSE IF( LSAME( NORM, 'M' ) ) THEN -* -* Find max(abs(A(i,j))). -* - VALUE = ZERO - IF( LSAME( UPLO, 'U' ) ) THEN - DO 20 J = 1, N - DO 10 I = 1, J - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 10 CONTINUE - 20 CONTINUE - ELSE - DO 40 J = 1, N - DO 30 I = J, N - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. - $ ( NORM.EQ.'1' ) ) THEN -* -* Find normI(A) ( = norm1(A), since A is symmetric). -* - VALUE = ZERO - IF( LSAME( UPLO, 'U' ) ) THEN - DO 60 J = 1, N - SUM = ZERO - DO 50 I = 1, J - 1 - ABSA = ABS( A( I, J ) ) - SUM = SUM + ABSA - WORK( I ) = WORK( I ) + ABSA - 50 CONTINUE - WORK( J ) = SUM + ABS( A( J, J ) ) - 60 CONTINUE - DO 70 I = 1, N - VALUE = MAX( VALUE, WORK( I ) ) - 70 CONTINUE - ELSE - DO 80 I = 1, N - WORK( I ) = ZERO - 80 CONTINUE - DO 100 J = 1, N - SUM = WORK( J ) + ABS( A( J, J ) ) - DO 90 I = J + 1, N - ABSA = ABS( A( I, J ) ) - SUM = SUM + ABSA - WORK( I ) = WORK( I ) + ABSA - 90 CONTINUE - VALUE = MAX( VALUE, SUM ) - 100 CONTINUE - END IF - ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN -* -* Find normF(A). -* - SCALE = ZERO - SUM = ONE - IF( LSAME( UPLO, 'U' ) ) THEN - DO 110 J = 2, N - CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) - 110 CONTINUE - ELSE - DO 120 J = 1, N - 1 - CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) - 120 CONTINUE - END IF - SUM = 2*SUM - CALL DLASSQ( N, A, LDA+1, SCALE, SUM ) - VALUE = SCALE*SQRT( SUM ) - END IF -* - DLANSY = VALUE - RETURN -* -* End of DLANSY -* - END |