summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dlahrd.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dlahrd.f')
-rw-r--r--src/lib/lapack/dlahrd.f207
1 files changed, 0 insertions, 207 deletions
diff --git a/src/lib/lapack/dlahrd.f b/src/lib/lapack/dlahrd.f
deleted file mode 100644
index a04133d1..00000000
--- a/src/lib/lapack/dlahrd.f
+++ /dev/null
@@ -1,207 +0,0 @@
- SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER K, LDA, LDT, LDY, N, NB
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ),
- $ Y( LDY, NB )
-* ..
-*
-* Purpose
-* =======
-*
-* DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
-* matrix A so that elements below the k-th subdiagonal are zero. The
-* reduction is performed by an orthogonal similarity transformation
-* Q' * A * Q. The routine returns the matrices V and T which determine
-* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
-*
-* This is an OBSOLETE auxiliary routine.
-* This routine will be 'deprecated' in a future release.
-* Please use the new routine DLAHR2 instead.
-*
-* Arguments
-* =========
-*
-* N (input) INTEGER
-* The order of the matrix A.
-*
-* K (input) INTEGER
-* The offset for the reduction. Elements below the k-th
-* subdiagonal in the first NB columns are reduced to zero.
-*
-* NB (input) INTEGER
-* The number of columns to be reduced.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
-* On entry, the n-by-(n-k+1) general matrix A.
-* On exit, the elements on and above the k-th subdiagonal in
-* the first NB columns are overwritten with the corresponding
-* elements of the reduced matrix; the elements below the k-th
-* subdiagonal, with the array TAU, represent the matrix Q as a
-* product of elementary reflectors. The other columns of A are
-* unchanged. See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* TAU (output) DOUBLE PRECISION array, dimension (NB)
-* The scalar factors of the elementary reflectors. See Further
-* Details.
-*
-* T (output) DOUBLE PRECISION array, dimension (LDT,NB)
-* The upper triangular matrix T.
-*
-* LDT (input) INTEGER
-* The leading dimension of the array T. LDT >= NB.
-*
-* Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
-* The n-by-nb matrix Y.
-*
-* LDY (input) INTEGER
-* The leading dimension of the array Y. LDY >= N.
-*
-* Further Details
-* ===============
-*
-* The matrix Q is represented as a product of nb elementary reflectors
-*
-* Q = H(1) H(2) . . . H(nb).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
-* A(i+k+1:n,i), and tau in TAU(i).
-*
-* The elements of the vectors v together form the (n-k+1)-by-nb matrix
-* V which is needed, with T and Y, to apply the transformation to the
-* unreduced part of the matrix, using an update of the form:
-* A := (I - V*T*V') * (A - Y*V').
-*
-* The contents of A on exit are illustrated by the following example
-* with n = 7, k = 3 and nb = 2:
-*
-* ( a h a a a )
-* ( a h a a a )
-* ( a h a a a )
-* ( h h a a a )
-* ( v1 h a a a )
-* ( v1 v2 a a a )
-* ( v1 v2 a a a )
-*
-* where a denotes an element of the original matrix A, h denotes a
-* modified element of the upper Hessenberg matrix H, and vi denotes an
-* element of the vector defining H(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- INTEGER I
- DOUBLE PRECISION EI
-* ..
-* .. External Subroutines ..
- EXTERNAL DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MIN
-* ..
-* .. Executable Statements ..
-*
-* Quick return if possible
-*
- IF( N.LE.1 )
- $ RETURN
-*
- DO 10 I = 1, NB
- IF( I.GT.1 ) THEN
-*
-* Update A(1:n,i)
-*
-* Compute i-th column of A - Y * V'
-*
- CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
- $ A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
-*
-* Apply I - V * T' * V' to this column (call it b) from the
-* left, using the last column of T as workspace
-*
-* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
-* ( V2 ) ( b2 )
-*
-* where V1 is unit lower triangular
-*
-* w := V1' * b1
-*
- CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
- CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
- $ LDA, T( 1, NB ), 1 )
-*
-* w := w + V2'*b2
-*
- CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
- $ LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
-*
-* w := T'*w
-*
- CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
- $ T( 1, NB ), 1 )
-*
-* b2 := b2 - V2*w
-*
- CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
- $ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
-*
-* b1 := b1 - V1*w
-*
- CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
- $ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
- CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
-*
- A( K+I-1, I-1 ) = EI
- END IF
-*
-* Generate the elementary reflector H(i) to annihilate
-* A(k+i+1:n,i)
-*
- CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
- $ TAU( I ) )
- EI = A( K+I, I )
- A( K+I, I ) = ONE
-*
-* Compute Y(1:n,i)
-*
- CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
- $ A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
- $ A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
- CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
- $ ONE, Y( 1, I ), 1 )
- CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
-*
-* Compute T(1:i,i)
-*
- CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
- CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
- $ T( 1, I ), 1 )
- T( I, I ) = TAU( I )
-*
- 10 CONTINUE
- A( K+NB, NB ) = EI
-*
- RETURN
-*
-* End of DLAHRD
-*
- END