diff options
Diffstat (limited to 'src/lib/lapack/dhgeqz.f')
-rw-r--r-- | src/lib/lapack/dhgeqz.f | 1243 |
1 files changed, 0 insertions, 1243 deletions
diff --git a/src/lib/lapack/dhgeqz.f b/src/lib/lapack/dhgeqz.f deleted file mode 100644 index de137dc1..00000000 --- a/src/lib/lapack/dhgeqz.f +++ /dev/null @@ -1,1243 +0,0 @@ - SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, - $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, - $ LWORK, INFO ) -* -* -- LAPACK routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER COMPQ, COMPZ, JOB - INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), BETA( * ), - $ H( LDH, * ), Q( LDQ, * ), T( LDT, * ), - $ WORK( * ), Z( LDZ, * ) -* .. -* -* Purpose -* ======= -* -* DHGEQZ computes the eigenvalues of a real matrix pair (H,T), -* where H is an upper Hessenberg matrix and T is upper triangular, -* using the double-shift QZ method. -* Matrix pairs of this type are produced by the reduction to -* generalized upper Hessenberg form of a real matrix pair (A,B): -* -* A = Q1*H*Z1**T, B = Q1*T*Z1**T, -* -* as computed by DGGHRD. -* -* If JOB='S', then the Hessenberg-triangular pair (H,T) is -* also reduced to generalized Schur form, -* -* H = Q*S*Z**T, T = Q*P*Z**T, -* -* where Q and Z are orthogonal matrices, P is an upper triangular -* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 -* diagonal blocks. -* -* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair -* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of -* eigenvalues. -* -* Additionally, the 2-by-2 upper triangular diagonal blocks of P -* corresponding to 2-by-2 blocks of S are reduced to positive diagonal -* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, -* P(j,j) > 0, and P(j+1,j+1) > 0. -* -* Optionally, the orthogonal matrix Q from the generalized Schur -* factorization may be postmultiplied into an input matrix Q1, and the -* orthogonal matrix Z may be postmultiplied into an input matrix Z1. -* If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced -* the matrix pair (A,B) to generalized upper Hessenberg form, then the -* output matrices Q1*Q and Z1*Z are the orthogonal factors from the -* generalized Schur factorization of (A,B): -* -* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T. -* -* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, -* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is -* complex and beta real. -* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the -* generalized nonsymmetric eigenvalue problem (GNEP) -* A*x = lambda*B*x -* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the -* alternate form of the GNEP -* mu*A*y = B*y. -* Real eigenvalues can be read directly from the generalized Schur -* form: -* alpha = S(i,i), beta = P(i,i). -* -* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix -* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), -* pp. 241--256. -* -* Arguments -* ========= -* -* JOB (input) CHARACTER*1 -* = 'E': Compute eigenvalues only; -* = 'S': Compute eigenvalues and the Schur form. -* -* COMPQ (input) CHARACTER*1 -* = 'N': Left Schur vectors (Q) are not computed; -* = 'I': Q is initialized to the unit matrix and the matrix Q -* of left Schur vectors of (H,T) is returned; -* = 'V': Q must contain an orthogonal matrix Q1 on entry and -* the product Q1*Q is returned. -* -* COMPZ (input) CHARACTER*1 -* = 'N': Right Schur vectors (Z) are not computed; -* = 'I': Z is initialized to the unit matrix and the matrix Z -* of right Schur vectors of (H,T) is returned; -* = 'V': Z must contain an orthogonal matrix Z1 on entry and -* the product Z1*Z is returned. -* -* N (input) INTEGER -* The order of the matrices H, T, Q, and Z. N >= 0. -* -* ILO (input) INTEGER -* IHI (input) INTEGER -* ILO and IHI mark the rows and columns of H which are in -* Hessenberg form. It is assumed that A is already upper -* triangular in rows and columns 1:ILO-1 and IHI+1:N. -* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. -* -* H (input/output) DOUBLE PRECISION array, dimension (LDH, N) -* On entry, the N-by-N upper Hessenberg matrix H. -* On exit, if JOB = 'S', H contains the upper quasi-triangular -* matrix S from the generalized Schur factorization; -* 2-by-2 diagonal blocks (corresponding to complex conjugate -* pairs of eigenvalues) are returned in standard form, with -* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. -* If JOB = 'E', the diagonal blocks of H match those of S, but -* the rest of H is unspecified. -* -* LDH (input) INTEGER -* The leading dimension of the array H. LDH >= max( 1, N ). -* -* T (input/output) DOUBLE PRECISION array, dimension (LDT, N) -* On entry, the N-by-N upper triangular matrix T. -* On exit, if JOB = 'S', T contains the upper triangular -* matrix P from the generalized Schur factorization; -* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S -* are reduced to positive diagonal form, i.e., if H(j+1,j) is -* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and -* T(j+1,j+1) > 0. -* If JOB = 'E', the diagonal blocks of T match those of P, but -* the rest of T is unspecified. -* -* LDT (input) INTEGER -* The leading dimension of the array T. LDT >= max( 1, N ). -* -* ALPHAR (output) DOUBLE PRECISION array, dimension (N) -* The real parts of each scalar alpha defining an eigenvalue -* of GNEP. -* -* ALPHAI (output) DOUBLE PRECISION array, dimension (N) -* The imaginary parts of each scalar alpha defining an -* eigenvalue of GNEP. -* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if -* positive, then the j-th and (j+1)-st eigenvalues are a -* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). -* -* BETA (output) DOUBLE PRECISION array, dimension (N) -* The scalars beta that define the eigenvalues of GNEP. -* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and -* beta = BETA(j) represent the j-th eigenvalue of the matrix -* pair (A,B), in one of the forms lambda = alpha/beta or -* mu = beta/alpha. Since either lambda or mu may overflow, -* they should not, in general, be computed. -* -* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) -* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in -* the reduction of (A,B) to generalized Hessenberg form. -* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur -* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix -* of left Schur vectors of (A,B). -* Not referenced if COMPZ = 'N'. -* -* LDQ (input) INTEGER -* The leading dimension of the array Q. LDQ >= 1. -* If COMPQ='V' or 'I', then LDQ >= N. -* -* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) -* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in -* the reduction of (A,B) to generalized Hessenberg form. -* On exit, if COMPZ = 'I', the orthogonal matrix of -* right Schur vectors of (H,T), and if COMPZ = 'V', the -* orthogonal matrix of right Schur vectors of (A,B). -* Not referenced if COMPZ = 'N'. -* -* LDZ (input) INTEGER -* The leading dimension of the array Z. LDZ >= 1. -* If COMPZ='V' or 'I', then LDZ >= N. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N). -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* = 1,...,N: the QZ iteration did not converge. (H,T) is not -* in Schur form, but ALPHAR(i), ALPHAI(i), and -* BETA(i), i=INFO+1,...,N should be correct. -* = N+1,...,2*N: the shift calculation failed. (H,T) is not -* in Schur form, but ALPHAR(i), ALPHAI(i), and -* BETA(i), i=INFO-N+1,...,N should be correct. -* -* Further Details -* =============== -* -* Iteration counters: -* -* JITER -- counts iterations. -* IITER -- counts iterations run since ILAST was last -* changed. This is therefore reset only when a 1-by-1 or -* 2-by-2 block deflates off the bottom. -* -* ===================================================================== -* -* .. Parameters .. -* $ SAFETY = 1.0E+0 ) - DOUBLE PRECISION HALF, ZERO, ONE, SAFETY - PARAMETER ( HALF = 0.5D+0, ZERO = 0.0D+0, ONE = 1.0D+0, - $ SAFETY = 1.0D+2 ) -* .. -* .. Local Scalars .. - LOGICAL ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ, - $ LQUERY - INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST, - $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER, - $ JR, MAXIT - DOUBLE PRECISION A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11, - $ AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L, - $ AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I, - $ B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE, - $ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL, - $ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX, - $ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1, - $ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L, - $ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR, - $ WR2 -* .. -* .. Local Arrays .. - DOUBLE PRECISION V( 3 ) -* .. -* .. External Functions .. - LOGICAL LSAME - DOUBLE PRECISION DLAMCH, DLANHS, DLAPY2, DLAPY3 - EXTERNAL LSAME, DLAMCH, DLANHS, DLAPY2, DLAPY3 -* .. -* .. External Subroutines .. - EXTERNAL DLAG2, DLARFG, DLARTG, DLASET, DLASV2, DROT, - $ XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, DBLE, MAX, MIN, SQRT -* .. -* .. Executable Statements .. -* -* Decode JOB, COMPQ, COMPZ -* - IF( LSAME( JOB, 'E' ) ) THEN - ILSCHR = .FALSE. - ISCHUR = 1 - ELSE IF( LSAME( JOB, 'S' ) ) THEN - ILSCHR = .TRUE. - ISCHUR = 2 - ELSE - ISCHUR = 0 - END IF -* - IF( LSAME( COMPQ, 'N' ) ) THEN - ILQ = .FALSE. - ICOMPQ = 1 - ELSE IF( LSAME( COMPQ, 'V' ) ) THEN - ILQ = .TRUE. - ICOMPQ = 2 - ELSE IF( LSAME( COMPQ, 'I' ) ) THEN - ILQ = .TRUE. - ICOMPQ = 3 - ELSE - ICOMPQ = 0 - END IF -* - IF( LSAME( COMPZ, 'N' ) ) THEN - ILZ = .FALSE. - ICOMPZ = 1 - ELSE IF( LSAME( COMPZ, 'V' ) ) THEN - ILZ = .TRUE. - ICOMPZ = 2 - ELSE IF( LSAME( COMPZ, 'I' ) ) THEN - ILZ = .TRUE. - ICOMPZ = 3 - ELSE - ICOMPZ = 0 - END IF -* -* Check Argument Values -* - INFO = 0 - WORK( 1 ) = MAX( 1, N ) - LQUERY = ( LWORK.EQ.-1 ) - IF( ISCHUR.EQ.0 ) THEN - INFO = -1 - ELSE IF( ICOMPQ.EQ.0 ) THEN - INFO = -2 - ELSE IF( ICOMPZ.EQ.0 ) THEN - INFO = -3 - ELSE IF( N.LT.0 ) THEN - INFO = -4 - ELSE IF( ILO.LT.1 ) THEN - INFO = -5 - ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN - INFO = -6 - ELSE IF( LDH.LT.N ) THEN - INFO = -8 - ELSE IF( LDT.LT.N ) THEN - INFO = -10 - ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN - INFO = -15 - ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN - INFO = -17 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -19 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DHGEQZ', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.LE.0 ) THEN - WORK( 1 ) = DBLE( 1 ) - RETURN - END IF -* -* Initialize Q and Z -* - IF( ICOMPQ.EQ.3 ) - $ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ ) - IF( ICOMPZ.EQ.3 ) - $ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) -* -* Machine Constants -* - IN = IHI + 1 - ILO - SAFMIN = DLAMCH( 'S' ) - SAFMAX = ONE / SAFMIN - ULP = DLAMCH( 'E' )*DLAMCH( 'B' ) - ANORM = DLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK ) - BNORM = DLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK ) - ATOL = MAX( SAFMIN, ULP*ANORM ) - BTOL = MAX( SAFMIN, ULP*BNORM ) - ASCALE = ONE / MAX( SAFMIN, ANORM ) - BSCALE = ONE / MAX( SAFMIN, BNORM ) -* -* Set Eigenvalues IHI+1:N -* - DO 30 J = IHI + 1, N - IF( T( J, J ).LT.ZERO ) THEN - IF( ILSCHR ) THEN - DO 10 JR = 1, J - H( JR, J ) = -H( JR, J ) - T( JR, J ) = -T( JR, J ) - 10 CONTINUE - ELSE - H( J, J ) = -H( J, J ) - T( J, J ) = -T( J, J ) - END IF - IF( ILZ ) THEN - DO 20 JR = 1, N - Z( JR, J ) = -Z( JR, J ) - 20 CONTINUE - END IF - END IF - ALPHAR( J ) = H( J, J ) - ALPHAI( J ) = ZERO - BETA( J ) = T( J, J ) - 30 CONTINUE -* -* If IHI < ILO, skip QZ steps -* - IF( IHI.LT.ILO ) - $ GO TO 380 -* -* MAIN QZ ITERATION LOOP -* -* Initialize dynamic indices -* -* Eigenvalues ILAST+1:N have been found. -* Column operations modify rows IFRSTM:whatever. -* Row operations modify columns whatever:ILASTM. -* -* If only eigenvalues are being computed, then -* IFRSTM is the row of the last splitting row above row ILAST; -* this is always at least ILO. -* IITER counts iterations since the last eigenvalue was found, -* to tell when to use an extraordinary shift. -* MAXIT is the maximum number of QZ sweeps allowed. -* - ILAST = IHI - IF( ILSCHR ) THEN - IFRSTM = 1 - ILASTM = N - ELSE - IFRSTM = ILO - ILASTM = IHI - END IF - IITER = 0 - ESHIFT = ZERO - MAXIT = 30*( IHI-ILO+1 ) -* - DO 360 JITER = 1, MAXIT -* -* Split the matrix if possible. -* -* Two tests: -* 1: H(j,j-1)=0 or j=ILO -* 2: T(j,j)=0 -* - IF( ILAST.EQ.ILO ) THEN -* -* Special case: j=ILAST -* - GO TO 80 - ELSE - IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN - H( ILAST, ILAST-1 ) = ZERO - GO TO 80 - END IF - END IF -* - IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN - T( ILAST, ILAST ) = ZERO - GO TO 70 - END IF -* -* General case: j<ILAST -* - DO 60 J = ILAST - 1, ILO, -1 -* -* Test 1: for H(j,j-1)=0 or j=ILO -* - IF( J.EQ.ILO ) THEN - ILAZRO = .TRUE. - ELSE - IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN - H( J, J-1 ) = ZERO - ILAZRO = .TRUE. - ELSE - ILAZRO = .FALSE. - END IF - END IF -* -* Test 2: for T(j,j)=0 -* - IF( ABS( T( J, J ) ).LT.BTOL ) THEN - T( J, J ) = ZERO -* -* Test 1a: Check for 2 consecutive small subdiagonals in A -* - ILAZR2 = .FALSE. - IF( .NOT.ILAZRO ) THEN - TEMP = ABS( H( J, J-1 ) ) - TEMP2 = ABS( H( J, J ) ) - TEMPR = MAX( TEMP, TEMP2 ) - IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN - TEMP = TEMP / TEMPR - TEMP2 = TEMP2 / TEMPR - END IF - IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2* - $ ( ASCALE*ATOL ) )ILAZR2 = .TRUE. - END IF -* -* If both tests pass (1 & 2), i.e., the leading diagonal -* element of B in the block is zero, split a 1x1 block off -* at the top. (I.e., at the J-th row/column) The leading -* diagonal element of the remainder can also be zero, so -* this may have to be done repeatedly. -* - IF( ILAZRO .OR. ILAZR2 ) THEN - DO 40 JCH = J, ILAST - 1 - TEMP = H( JCH, JCH ) - CALL DLARTG( TEMP, H( JCH+1, JCH ), C, S, - $ H( JCH, JCH ) ) - H( JCH+1, JCH ) = ZERO - CALL DROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH, - $ H( JCH+1, JCH+1 ), LDH, C, S ) - CALL DROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT, - $ T( JCH+1, JCH+1 ), LDT, C, S ) - IF( ILQ ) - $ CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, - $ C, S ) - IF( ILAZR2 ) - $ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C - ILAZR2 = .FALSE. - IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN - IF( JCH+1.GE.ILAST ) THEN - GO TO 80 - ELSE - IFIRST = JCH + 1 - GO TO 110 - END IF - END IF - T( JCH+1, JCH+1 ) = ZERO - 40 CONTINUE - GO TO 70 - ELSE -* -* Only test 2 passed -- chase the zero to T(ILAST,ILAST) -* Then process as in the case T(ILAST,ILAST)=0 -* - DO 50 JCH = J, ILAST - 1 - TEMP = T( JCH, JCH+1 ) - CALL DLARTG( TEMP, T( JCH+1, JCH+1 ), C, S, - $ T( JCH, JCH+1 ) ) - T( JCH+1, JCH+1 ) = ZERO - IF( JCH.LT.ILASTM-1 ) - $ CALL DROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT, - $ T( JCH+1, JCH+2 ), LDT, C, S ) - CALL DROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH, - $ H( JCH+1, JCH-1 ), LDH, C, S ) - IF( ILQ ) - $ CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, - $ C, S ) - TEMP = H( JCH+1, JCH ) - CALL DLARTG( TEMP, H( JCH+1, JCH-1 ), C, S, - $ H( JCH+1, JCH ) ) - H( JCH+1, JCH-1 ) = ZERO - CALL DROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1, - $ H( IFRSTM, JCH-1 ), 1, C, S ) - CALL DROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1, - $ T( IFRSTM, JCH-1 ), 1, C, S ) - IF( ILZ ) - $ CALL DROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1, - $ C, S ) - 50 CONTINUE - GO TO 70 - END IF - ELSE IF( ILAZRO ) THEN -* -* Only test 1 passed -- work on J:ILAST -* - IFIRST = J - GO TO 110 - END IF -* -* Neither test passed -- try next J -* - 60 CONTINUE -* -* (Drop-through is "impossible") -* - INFO = N + 1 - GO TO 420 -* -* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a -* 1x1 block. -* - 70 CONTINUE - TEMP = H( ILAST, ILAST ) - CALL DLARTG( TEMP, H( ILAST, ILAST-1 ), C, S, - $ H( ILAST, ILAST ) ) - H( ILAST, ILAST-1 ) = ZERO - CALL DROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1, - $ H( IFRSTM, ILAST-1 ), 1, C, S ) - CALL DROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1, - $ T( IFRSTM, ILAST-1 ), 1, C, S ) - IF( ILZ ) - $ CALL DROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S ) -* -* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, -* and BETA -* - 80 CONTINUE - IF( T( ILAST, ILAST ).LT.ZERO ) THEN - IF( ILSCHR ) THEN - DO 90 J = IFRSTM, ILAST - H( J, ILAST ) = -H( J, ILAST ) - T( J, ILAST ) = -T( J, ILAST ) - 90 CONTINUE - ELSE - H( ILAST, ILAST ) = -H( ILAST, ILAST ) - T( ILAST, ILAST ) = -T( ILAST, ILAST ) - END IF - IF( ILZ ) THEN - DO 100 J = 1, N - Z( J, ILAST ) = -Z( J, ILAST ) - 100 CONTINUE - END IF - END IF - ALPHAR( ILAST ) = H( ILAST, ILAST ) - ALPHAI( ILAST ) = ZERO - BETA( ILAST ) = T( ILAST, ILAST ) -* -* Go to next block -- exit if finished. -* - ILAST = ILAST - 1 - IF( ILAST.LT.ILO ) - $ GO TO 380 -* -* Reset counters -* - IITER = 0 - ESHIFT = ZERO - IF( .NOT.ILSCHR ) THEN - ILASTM = ILAST - IF( IFRSTM.GT.ILAST ) - $ IFRSTM = ILO - END IF - GO TO 350 -* -* QZ step -* -* This iteration only involves rows/columns IFIRST:ILAST. We -* assume IFIRST < ILAST, and that the diagonal of B is non-zero. -* - 110 CONTINUE - IITER = IITER + 1 - IF( .NOT.ILSCHR ) THEN - IFRSTM = IFIRST - END IF -* -* Compute single shifts. -* -* At this point, IFIRST < ILAST, and the diagonal elements of -* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in -* magnitude) -* - IF( ( IITER / 10 )*10.EQ.IITER ) THEN -* -* Exceptional shift. Chosen for no particularly good reason. -* (Single shift only.) -* - IF( ( DBLE( MAXIT )*SAFMIN )*ABS( H( ILAST-1, ILAST ) ).LT. - $ ABS( T( ILAST-1, ILAST-1 ) ) ) THEN - ESHIFT = ESHIFT + H( ILAST-1, ILAST ) / - $ T( ILAST-1, ILAST-1 ) - ELSE - ESHIFT = ESHIFT + ONE / ( SAFMIN*DBLE( MAXIT ) ) - END IF - S1 = ONE - WR = ESHIFT -* - ELSE -* -* Shifts based on the generalized eigenvalues of the -* bottom-right 2x2 block of A and B. The first eigenvalue -* returned by DLAG2 is the Wilkinson shift (AEP p.512), -* - CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH, - $ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1, - $ S2, WR, WR2, WI ) -* - TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) ) - IF( WI.NE.ZERO ) - $ GO TO 200 - END IF -* -* Fiddle with shift to avoid overflow -* - TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX ) - IF( S1.GT.TEMP ) THEN - SCALE = TEMP / S1 - ELSE - SCALE = ONE - END IF -* - TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX ) - IF( ABS( WR ).GT.TEMP ) - $ SCALE = MIN( SCALE, TEMP / ABS( WR ) ) - S1 = SCALE*S1 - WR = SCALE*WR -* -* Now check for two consecutive small subdiagonals. -* - DO 120 J = ILAST - 1, IFIRST + 1, -1 - ISTART = J - TEMP = ABS( S1*H( J, J-1 ) ) - TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) ) - TEMPR = MAX( TEMP, TEMP2 ) - IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN - TEMP = TEMP / TEMPR - TEMP2 = TEMP2 / TEMPR - END IF - IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )* - $ TEMP2 )GO TO 130 - 120 CONTINUE -* - ISTART = IFIRST - 130 CONTINUE -* -* Do an implicit single-shift QZ sweep. -* -* Initial Q -* - TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART ) - TEMP2 = S1*H( ISTART+1, ISTART ) - CALL DLARTG( TEMP, TEMP2, C, S, TEMPR ) -* -* Sweep -* - DO 190 J = ISTART, ILAST - 1 - IF( J.GT.ISTART ) THEN - TEMP = H( J, J-1 ) - CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) - H( J+1, J-1 ) = ZERO - END IF -* - DO 140 JC = J, ILASTM - TEMP = C*H( J, JC ) + S*H( J+1, JC ) - H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC ) - H( J, JC ) = TEMP - TEMP2 = C*T( J, JC ) + S*T( J+1, JC ) - T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC ) - T( J, JC ) = TEMP2 - 140 CONTINUE - IF( ILQ ) THEN - DO 150 JR = 1, N - TEMP = C*Q( JR, J ) + S*Q( JR, J+1 ) - Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) - Q( JR, J ) = TEMP - 150 CONTINUE - END IF -* - TEMP = T( J+1, J+1 ) - CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) - T( J+1, J ) = ZERO -* - DO 160 JR = IFRSTM, MIN( J+2, ILAST ) - TEMP = C*H( JR, J+1 ) + S*H( JR, J ) - H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J ) - H( JR, J+1 ) = TEMP - 160 CONTINUE - DO 170 JR = IFRSTM, J - TEMP = C*T( JR, J+1 ) + S*T( JR, J ) - T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J ) - T( JR, J+1 ) = TEMP - 170 CONTINUE - IF( ILZ ) THEN - DO 180 JR = 1, N - TEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) - Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J ) - Z( JR, J+1 ) = TEMP - 180 CONTINUE - END IF - 190 CONTINUE -* - GO TO 350 -* -* Use Francis double-shift -* -* Note: the Francis double-shift should work with real shifts, -* but only if the block is at least 3x3. -* This code may break if this point is reached with -* a 2x2 block with real eigenvalues. -* - 200 CONTINUE - IF( IFIRST+1.EQ.ILAST ) THEN -* -* Special case -- 2x2 block with complex eigenvectors -* -* Step 1: Standardize, that is, rotate so that -* -* ( B11 0 ) -* B = ( ) with B11 non-negative. -* ( 0 B22 ) -* - CALL DLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ), - $ T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL ) -* - IF( B11.LT.ZERO ) THEN - CR = -CR - SR = -SR - B11 = -B11 - B22 = -B22 - END IF -* - CALL DROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH, - $ H( ILAST, ILAST-1 ), LDH, CL, SL ) - CALL DROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1, - $ H( IFRSTM, ILAST ), 1, CR, SR ) -* - IF( ILAST.LT.ILASTM ) - $ CALL DROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT, - $ T( ILAST, ILAST+1 ), LDH, CL, SL ) - IF( IFRSTM.LT.ILAST-1 ) - $ CALL DROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1, - $ T( IFRSTM, ILAST ), 1, CR, SR ) -* - IF( ILQ ) - $ CALL DROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL, - $ SL ) - IF( ILZ ) - $ CALL DROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR, - $ SR ) -* - T( ILAST-1, ILAST-1 ) = B11 - T( ILAST-1, ILAST ) = ZERO - T( ILAST, ILAST-1 ) = ZERO - T( ILAST, ILAST ) = B22 -* -* If B22 is negative, negate column ILAST -* - IF( B22.LT.ZERO ) THEN - DO 210 J = IFRSTM, ILAST - H( J, ILAST ) = -H( J, ILAST ) - T( J, ILAST ) = -T( J, ILAST ) - 210 CONTINUE -* - IF( ILZ ) THEN - DO 220 J = 1, N - Z( J, ILAST ) = -Z( J, ILAST ) - 220 CONTINUE - END IF - END IF -* -* Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) -* -* Recompute shift -* - CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH, - $ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1, - $ TEMP, WR, TEMP2, WI ) -* -* If standardization has perturbed the shift onto real line, -* do another (real single-shift) QR step. -* - IF( WI.EQ.ZERO ) - $ GO TO 350 - S1INV = ONE / S1 -* -* Do EISPACK (QZVAL) computation of alpha and beta -* - A11 = H( ILAST-1, ILAST-1 ) - A21 = H( ILAST, ILAST-1 ) - A12 = H( ILAST-1, ILAST ) - A22 = H( ILAST, ILAST ) -* -* Compute complex Givens rotation on right -* (Assume some element of C = (sA - wB) > unfl ) -* __ -* (sA - wB) ( CZ -SZ ) -* ( SZ CZ ) -* - C11R = S1*A11 - WR*B11 - C11I = -WI*B11 - C12 = S1*A12 - C21 = S1*A21 - C22R = S1*A22 - WR*B22 - C22I = -WI*B22 -* - IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+ - $ ABS( C22R )+ABS( C22I ) ) THEN - T1 = DLAPY3( C12, C11R, C11I ) - CZ = C12 / T1 - SZR = -C11R / T1 - SZI = -C11I / T1 - ELSE - CZ = DLAPY2( C22R, C22I ) - IF( CZ.LE.SAFMIN ) THEN - CZ = ZERO - SZR = ONE - SZI = ZERO - ELSE - TEMPR = C22R / CZ - TEMPI = C22I / CZ - T1 = DLAPY2( CZ, C21 ) - CZ = CZ / T1 - SZR = -C21*TEMPR / T1 - SZI = C21*TEMPI / T1 - END IF - END IF -* -* Compute Givens rotation on left -* -* ( CQ SQ ) -* ( __ ) A or B -* ( -SQ CQ ) -* - AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 ) - BN = ABS( B11 ) + ABS( B22 ) - WABS = ABS( WR ) + ABS( WI ) - IF( S1*AN.GT.WABS*BN ) THEN - CQ = CZ*B11 - SQR = SZR*B22 - SQI = -SZI*B22 - ELSE - A1R = CZ*A11 + SZR*A12 - A1I = SZI*A12 - A2R = CZ*A21 + SZR*A22 - A2I = SZI*A22 - CQ = DLAPY2( A1R, A1I ) - IF( CQ.LE.SAFMIN ) THEN - CQ = ZERO - SQR = ONE - SQI = ZERO - ELSE - TEMPR = A1R / CQ - TEMPI = A1I / CQ - SQR = TEMPR*A2R + TEMPI*A2I - SQI = TEMPI*A2R - TEMPR*A2I - END IF - END IF - T1 = DLAPY3( CQ, SQR, SQI ) - CQ = CQ / T1 - SQR = SQR / T1 - SQI = SQI / T1 -* -* Compute diagonal elements of QBZ -* - TEMPR = SQR*SZR - SQI*SZI - TEMPI = SQR*SZI + SQI*SZR - B1R = CQ*CZ*B11 + TEMPR*B22 - B1I = TEMPI*B22 - B1A = DLAPY2( B1R, B1I ) - B2R = CQ*CZ*B22 + TEMPR*B11 - B2I = -TEMPI*B11 - B2A = DLAPY2( B2R, B2I ) -* -* Normalize so beta > 0, and Im( alpha1 ) > 0 -* - BETA( ILAST-1 ) = B1A - BETA( ILAST ) = B2A - ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV - ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV - ALPHAR( ILAST ) = ( WR*B2A )*S1INV - ALPHAI( ILAST ) = -( WI*B2A )*S1INV -* -* Step 3: Go to next block -- exit if finished. -* - ILAST = IFIRST - 1 - IF( ILAST.LT.ILO ) - $ GO TO 380 -* -* Reset counters -* - IITER = 0 - ESHIFT = ZERO - IF( .NOT.ILSCHR ) THEN - ILASTM = ILAST - IF( IFRSTM.GT.ILAST ) - $ IFRSTM = ILO - END IF - GO TO 350 - ELSE -* -* Usual case: 3x3 or larger block, using Francis implicit -* double-shift -* -* 2 -* Eigenvalue equation is w - c w + d = 0, -* -* -1 2 -1 -* so compute 1st column of (A B ) - c A B + d -* using the formula in QZIT (from EISPACK) -* -* We assume that the block is at least 3x3 -* - AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) / - $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) - AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) / - $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) - AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) / - $ ( BSCALE*T( ILAST, ILAST ) ) - AD22 = ( ASCALE*H( ILAST, ILAST ) ) / - $ ( BSCALE*T( ILAST, ILAST ) ) - U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST ) - AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) / - $ ( BSCALE*T( IFIRST, IFIRST ) ) - AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) / - $ ( BSCALE*T( IFIRST, IFIRST ) ) - AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) / - $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) - AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) / - $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) - AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) / - $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) - U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 ) -* - V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 + - $ AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L - V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )- - $ ( AD22-AD11L )+AD21*U12 )*AD21L - V( 3 ) = AD32L*AD21L -* - ISTART = IFIRST -* - CALL DLARFG( 3, V( 1 ), V( 2 ), 1, TAU ) - V( 1 ) = ONE -* -* Sweep -* - DO 290 J = ISTART, ILAST - 2 -* -* All but last elements: use 3x3 Householder transforms. -* -* Zero (j-1)st column of A -* - IF( J.GT.ISTART ) THEN - V( 1 ) = H( J, J-1 ) - V( 2 ) = H( J+1, J-1 ) - V( 3 ) = H( J+2, J-1 ) -* - CALL DLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU ) - V( 1 ) = ONE - H( J+1, J-1 ) = ZERO - H( J+2, J-1 ) = ZERO - END IF -* - DO 230 JC = J, ILASTM - TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* - $ H( J+2, JC ) ) - H( J, JC ) = H( J, JC ) - TEMP - H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 ) - H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 ) - TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* - $ T( J+2, JC ) ) - T( J, JC ) = T( J, JC ) - TEMP2 - T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 ) - T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 ) - 230 CONTINUE - IF( ILQ ) THEN - DO 240 JR = 1, N - TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* - $ Q( JR, J+2 ) ) - Q( JR, J ) = Q( JR, J ) - TEMP - Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 ) - Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 ) - 240 CONTINUE - END IF -* -* Zero j-th column of B (see DLAGBC for details) -* -* Swap rows to pivot -* - ILPIVT = .FALSE. - TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) ) - TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) ) - IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN - SCALE = ZERO - U1 = ONE - U2 = ZERO - GO TO 250 - ELSE IF( TEMP.GE.TEMP2 ) THEN - W11 = T( J+1, J+1 ) - W21 = T( J+2, J+1 ) - W12 = T( J+1, J+2 ) - W22 = T( J+2, J+2 ) - U1 = T( J+1, J ) - U2 = T( J+2, J ) - ELSE - W21 = T( J+1, J+1 ) - W11 = T( J+2, J+1 ) - W22 = T( J+1, J+2 ) - W12 = T( J+2, J+2 ) - U2 = T( J+1, J ) - U1 = T( J+2, J ) - END IF -* -* Swap columns if nec. -* - IF( ABS( W12 ).GT.ABS( W11 ) ) THEN - ILPIVT = .TRUE. - TEMP = W12 - TEMP2 = W22 - W12 = W11 - W22 = W21 - W11 = TEMP - W21 = TEMP2 - END IF -* -* LU-factor -* - TEMP = W21 / W11 - U2 = U2 - TEMP*U1 - W22 = W22 - TEMP*W12 - W21 = ZERO -* -* Compute SCALE -* - SCALE = ONE - IF( ABS( W22 ).LT.SAFMIN ) THEN - SCALE = ZERO - U2 = ONE - U1 = -W12 / W11 - GO TO 250 - END IF - IF( ABS( W22 ).LT.ABS( U2 ) ) - $ SCALE = ABS( W22 / U2 ) - IF( ABS( W11 ).LT.ABS( U1 ) ) - $ SCALE = MIN( SCALE, ABS( W11 / U1 ) ) -* -* Solve -* - U2 = ( SCALE*U2 ) / W22 - U1 = ( SCALE*U1-W12*U2 ) / W11 -* - 250 CONTINUE - IF( ILPIVT ) THEN - TEMP = U2 - U2 = U1 - U1 = TEMP - END IF -* -* Compute Householder Vector -* - T1 = SQRT( SCALE**2+U1**2+U2**2 ) - TAU = ONE + SCALE / T1 - VS = -ONE / ( SCALE+T1 ) - V( 1 ) = ONE - V( 2 ) = VS*U1 - V( 3 ) = VS*U2 -* -* Apply transformations from the right. -* - DO 260 JR = IFRSTM, MIN( J+3, ILAST ) - TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* - $ H( JR, J+2 ) ) - H( JR, J ) = H( JR, J ) - TEMP - H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 ) - H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 ) - 260 CONTINUE - DO 270 JR = IFRSTM, J + 2 - TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* - $ T( JR, J+2 ) ) - T( JR, J ) = T( JR, J ) - TEMP - T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 ) - T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 ) - 270 CONTINUE - IF( ILZ ) THEN - DO 280 JR = 1, N - TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* - $ Z( JR, J+2 ) ) - Z( JR, J ) = Z( JR, J ) - TEMP - Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 ) - Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 ) - 280 CONTINUE - END IF - T( J+1, J ) = ZERO - T( J+2, J ) = ZERO - 290 CONTINUE -* -* Last elements: Use Givens rotations -* -* Rotations from the left -* - J = ILAST - 1 - TEMP = H( J, J-1 ) - CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) - H( J+1, J-1 ) = ZERO -* - DO 300 JC = J, ILASTM - TEMP = C*H( J, JC ) + S*H( J+1, JC ) - H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC ) - H( J, JC ) = TEMP - TEMP2 = C*T( J, JC ) + S*T( J+1, JC ) - T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC ) - T( J, JC ) = TEMP2 - 300 CONTINUE - IF( ILQ ) THEN - DO 310 JR = 1, N - TEMP = C*Q( JR, J ) + S*Q( JR, J+1 ) - Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) - Q( JR, J ) = TEMP - 310 CONTINUE - END IF -* -* Rotations from the right. -* - TEMP = T( J+1, J+1 ) - CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) - T( J+1, J ) = ZERO -* - DO 320 JR = IFRSTM, ILAST - TEMP = C*H( JR, J+1 ) + S*H( JR, J ) - H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J ) - H( JR, J+1 ) = TEMP - 320 CONTINUE - DO 330 JR = IFRSTM, ILAST - 1 - TEMP = C*T( JR, J+1 ) + S*T( JR, J ) - T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J ) - T( JR, J+1 ) = TEMP - 330 CONTINUE - IF( ILZ ) THEN - DO 340 JR = 1, N - TEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) - Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J ) - Z( JR, J+1 ) = TEMP - 340 CONTINUE - END IF -* -* End of Double-Shift code -* - END IF -* - GO TO 350 -* -* End of iteration loop -* - 350 CONTINUE - 360 CONTINUE -* -* Drop-through = non-convergence -* - INFO = ILAST - GO TO 420 -* -* Successful completion of all QZ steps -* - 380 CONTINUE -* -* Set Eigenvalues 1:ILO-1 -* - DO 410 J = 1, ILO - 1 - IF( T( J, J ).LT.ZERO ) THEN - IF( ILSCHR ) THEN - DO 390 JR = 1, J - H( JR, J ) = -H( JR, J ) - T( JR, J ) = -T( JR, J ) - 390 CONTINUE - ELSE - H( J, J ) = -H( J, J ) - T( J, J ) = -T( J, J ) - END IF - IF( ILZ ) THEN - DO 400 JR = 1, N - Z( JR, J ) = -Z( JR, J ) - 400 CONTINUE - END IF - END IF - ALPHAR( J ) = H( J, J ) - ALPHAI( J ) = ZERO - BETA( J ) = T( J, J ) - 410 CONTINUE -* -* Normal Termination -* - INFO = 0 -* -* Exit (other than argument error) -- return optimal workspace size -* - 420 CONTINUE - WORK( 1 ) = DBLE( N ) - RETURN -* -* End of DHGEQZ -* - END |