summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dgelsx.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/lapack/dgelsx.f')
-rw-r--r--src/lib/lapack/dgelsx.f349
1 files changed, 0 insertions, 349 deletions
diff --git a/src/lib/lapack/dgelsx.f b/src/lib/lapack/dgelsx.f
deleted file mode 100644
index a597cd47..00000000
--- a/src/lib/lapack/dgelsx.f
+++ /dev/null
@@ -1,349 +0,0 @@
- SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
- $ WORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
- DOUBLE PRECISION RCOND
-* ..
-* .. Array Arguments ..
- INTEGER JPVT( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* This routine is deprecated and has been replaced by routine DGELSY.
-*
-* DGELSX computes the minimum-norm solution to a real linear least
-* squares problem:
-* minimize || A * X - B ||
-* using a complete orthogonal factorization of A. A is an M-by-N
-* matrix which may be rank-deficient.
-*
-* Several right hand side vectors b and solution vectors x can be
-* handled in a single call; they are stored as the columns of the
-* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
-* matrix X.
-*
-* The routine first computes a QR factorization with column pivoting:
-* A * P = Q * [ R11 R12 ]
-* [ 0 R22 ]
-* with R11 defined as the largest leading submatrix whose estimated
-* condition number is less than 1/RCOND. The order of R11, RANK,
-* is the effective rank of A.
-*
-* Then, R22 is considered to be negligible, and R12 is annihilated
-* by orthogonal transformations from the right, arriving at the
-* complete orthogonal factorization:
-* A * P = Q * [ T11 0 ] * Z
-* [ 0 0 ]
-* The minimum-norm solution is then
-* X = P * Z' [ inv(T11)*Q1'*B ]
-* [ 0 ]
-* where Q1 consists of the first RANK columns of Q.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of
-* columns of matrices B and X. NRHS >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the M-by-N matrix A.
-* On exit, A has been overwritten by details of its
-* complete orthogonal factorization.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
-* On entry, the M-by-NRHS right hand side matrix B.
-* On exit, the N-by-NRHS solution matrix X.
-* If m >= n and RANK = n, the residual sum-of-squares for
-* the solution in the i-th column is given by the sum of
-* squares of elements N+1:M in that column.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,M,N).
-*
-* JPVT (input/output) INTEGER array, dimension (N)
-* On entry, if JPVT(i) .ne. 0, the i-th column of A is an
-* initial column, otherwise it is a free column. Before
-* the QR factorization of A, all initial columns are
-* permuted to the leading positions; only the remaining
-* free columns are moved as a result of column pivoting
-* during the factorization.
-* On exit, if JPVT(i) = k, then the i-th column of A*P
-* was the k-th column of A.
-*
-* RCOND (input) DOUBLE PRECISION
-* RCOND is used to determine the effective rank of A, which
-* is defined as the order of the largest leading triangular
-* submatrix R11 in the QR factorization with pivoting of A,
-* whose estimated condition number < 1/RCOND.
-*
-* RANK (output) INTEGER
-* The effective rank of A, i.e., the order of the submatrix
-* R11. This is the same as the order of the submatrix T11
-* in the complete orthogonal factorization of A.
-*
-* WORK (workspace) DOUBLE PRECISION array, dimension
-* (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* =====================================================================
-*
-* .. Parameters ..
- INTEGER IMAX, IMIN
- PARAMETER ( IMAX = 1, IMIN = 2 )
- DOUBLE PRECISION ZERO, ONE, DONE, NTDONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
- $ NTDONE = ONE )
-* ..
-* .. Local Scalars ..
- INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
- DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
- $ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
-* ..
-* .. External Functions ..
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL DLAMCH, DLANGE
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
- $ DTRSM, DTZRQF, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
-* ..
-* .. Executable Statements ..
-*
- MN = MIN( M, N )
- ISMIN = MN + 1
- ISMAX = 2*MN + 1
-*
-* Test the input arguments.
-*
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
- INFO = -7
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGELSX', -INFO )
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( MIN( M, N, NRHS ).EQ.0 ) THEN
- RANK = 0
- RETURN
- END IF
-*
-* Get machine parameters
-*
- SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
-*
-* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
-*
- ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
-*
-* Scale matrix norm up to SMLNUM
-*
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
-*
-* Scale matrix norm down to BIGNUM
-*
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
-*
-* Matrix all zero. Return zero solution.
-*
- CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- RANK = 0
- GO TO 100
- END IF
-*
- BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
-*
-* Scale matrix norm up to SMLNUM
-*
- CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
-*
-* Scale matrix norm down to BIGNUM
-*
- CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 2
- END IF
-*
-* Compute QR factorization with column pivoting of A:
-* A * P = Q * R
-*
- CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
-*
-* workspace 3*N. Details of Householder rotations stored
-* in WORK(1:MN).
-*
-* Determine RANK using incremental condition estimation
-*
- WORK( ISMIN ) = ONE
- WORK( ISMAX ) = ONE
- SMAX = ABS( A( 1, 1 ) )
- SMIN = SMAX
- IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
- RANK = 0
- CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- GO TO 100
- ELSE
- RANK = 1
- END IF
-*
- 10 CONTINUE
- IF( RANK.LT.MN ) THEN
- I = RANK + 1
- CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
- $ A( I, I ), SMINPR, S1, C1 )
- CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
- $ A( I, I ), SMAXPR, S2, C2 )
-*
- IF( SMAXPR*RCOND.LE.SMINPR ) THEN
- DO 20 I = 1, RANK
- WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
- WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
- 20 CONTINUE
- WORK( ISMIN+RANK ) = C1
- WORK( ISMAX+RANK ) = C2
- SMIN = SMINPR
- SMAX = SMAXPR
- RANK = RANK + 1
- GO TO 10
- END IF
- END IF
-*
-* Logically partition R = [ R11 R12 ]
-* [ 0 R22 ]
-* where R11 = R(1:RANK,1:RANK)
-*
-* [R11,R12] = [ T11, 0 ] * Y
-*
- IF( RANK.LT.N )
- $ CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
-*
-* Details of Householder rotations stored in WORK(MN+1:2*MN)
-*
-* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
-*
- CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
- $ B, LDB, WORK( 2*MN+1 ), INFO )
-*
-* workspace NRHS
-*
-* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
-*
- CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
- $ NRHS, ONE, A, LDA, B, LDB )
-*
- DO 40 I = RANK + 1, N
- DO 30 J = 1, NRHS
- B( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
-*
-* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
-*
- IF( RANK.LT.N ) THEN
- DO 50 I = 1, RANK
- CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
- $ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
- $ WORK( 2*MN+1 ) )
- 50 CONTINUE
- END IF
-*
-* workspace NRHS
-*
-* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
-*
- DO 90 J = 1, NRHS
- DO 60 I = 1, N
- WORK( 2*MN+I ) = NTDONE
- 60 CONTINUE
- DO 80 I = 1, N
- IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
- IF( JPVT( I ).NE.I ) THEN
- K = I
- T1 = B( K, J )
- T2 = B( JPVT( K ), J )
- 70 CONTINUE
- B( JPVT( K ), J ) = T1
- WORK( 2*MN+K ) = DONE
- T1 = T2
- K = JPVT( K )
- T2 = B( JPVT( K ), J )
- IF( JPVT( K ).NE.I )
- $ GO TO 70
- B( I, J ) = T1
- WORK( 2*MN+K ) = DONE
- END IF
- END IF
- 80 CONTINUE
- 90 CONTINUE
-*
-* Undo scaling
-*
- IF( IASCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
- END IF
-*
- 100 CONTINUE
-*
- RETURN
-*
-* End of DGELSX
-*
- END