summaryrefslogtreecommitdiff
path: root/src/lib/lapack/zunmbr.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zunmbr.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zunmbr.f')
-rw-r--r--src/lib/lapack/zunmbr.f288
1 files changed, 0 insertions, 288 deletions
diff --git a/src/lib/lapack/zunmbr.f b/src/lib/lapack/zunmbr.f
deleted file mode 100644
index b32ce338..00000000
--- a/src/lib/lapack/zunmbr.f
+++ /dev/null
@@ -1,288 +0,0 @@
- SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
- $ LDC, WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER SIDE, TRANS, VECT
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
-* ..
-* .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
-* with
-* SIDE = 'L' SIDE = 'R'
-* TRANS = 'N': Q * C C * Q
-* TRANS = 'C': Q**H * C C * Q**H
-*
-* If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
-* with
-* SIDE = 'L' SIDE = 'R'
-* TRANS = 'N': P * C C * P
-* TRANS = 'C': P**H * C C * P**H
-*
-* Here Q and P**H are the unitary matrices determined by ZGEBRD when
-* reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
-* and P**H are defined as products of elementary reflectors H(i) and
-* G(i) respectively.
-*
-* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
-* order of the unitary matrix Q or P**H that is applied.
-*
-* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
-* if nq >= k, Q = H(1) H(2) . . . H(k);
-* if nq < k, Q = H(1) H(2) . . . H(nq-1).
-*
-* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
-* if k < nq, P = G(1) G(2) . . . G(k);
-* if k >= nq, P = G(1) G(2) . . . G(nq-1).
-*
-* Arguments
-* =========
-*
-* VECT (input) CHARACTER*1
-* = 'Q': apply Q or Q**H;
-* = 'P': apply P or P**H.
-*
-* SIDE (input) CHARACTER*1
-* = 'L': apply Q, Q**H, P or P**H from the Left;
-* = 'R': apply Q, Q**H, P or P**H from the Right.
-*
-* TRANS (input) CHARACTER*1
-* = 'N': No transpose, apply Q or P;
-* = 'C': Conjugate transpose, apply Q**H or P**H.
-*
-* M (input) INTEGER
-* The number of rows of the matrix C. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix C. N >= 0.
-*
-* K (input) INTEGER
-* If VECT = 'Q', the number of columns in the original
-* matrix reduced by ZGEBRD.
-* If VECT = 'P', the number of rows in the original
-* matrix reduced by ZGEBRD.
-* K >= 0.
-*
-* A (input) COMPLEX*16 array, dimension
-* (LDA,min(nq,K)) if VECT = 'Q'
-* (LDA,nq) if VECT = 'P'
-* The vectors which define the elementary reflectors H(i) and
-* G(i), whose products determine the matrices Q and P, as
-* returned by ZGEBRD.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A.
-* If VECT = 'Q', LDA >= max(1,nq);
-* if VECT = 'P', LDA >= max(1,min(nq,K)).
-*
-* TAU (input) COMPLEX*16 array, dimension (min(nq,K))
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i) or G(i) which determines Q or P, as returned
-* by ZGEBRD in the array argument TAUQ or TAUP.
-*
-* C (input/output) COMPLEX*16 array, dimension (LDC,N)
-* On entry, the M-by-N matrix C.
-* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
-* or P*C or P**H*C or C*P or C*P**H.
-*
-* LDC (input) INTEGER
-* The leading dimension of the array C. LDC >= max(1,M).
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* If SIDE = 'L', LWORK >= max(1,N);
-* if SIDE = 'R', LWORK >= max(1,M);
-* if N = 0 or M = 0, LWORK >= 1.
-* For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
-* and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
-* optimal blocksize. (NB = 0 if M = 0 or N = 0.)
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
- CHARACTER TRANST
- INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA, ZUNMLQ, ZUNMQR
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- APPLYQ = LSAME( VECT, 'Q' )
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
-*
-* NQ is the order of Q or P and NW is the minimum dimension of WORK
-*
- IF( LEFT ) THEN
- NQ = M
- NW = N
- ELSE
- NQ = N
- NW = M
- END IF
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- NW = 0
- END IF
- IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( K.LT.0 ) THEN
- INFO = -6
- ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
- $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
- $ THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -11
- ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
-*
- IF( INFO.EQ.0 ) THEN
- IF( NW.GT.0 ) THEN
- IF( APPLYQ ) THEN
- IF( LEFT ) THEN
- NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
- $ -1 )
- ELSE
- NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
- $ -1 )
- END IF
- ELSE
- IF( LEFT ) THEN
- NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
- $ -1 )
- ELSE
- NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
- $ -1 )
- END IF
- END IF
- LWKOPT = MAX( 1, NW*NB )
- ELSE
- LWKOPT = 1
- END IF
- WORK( 1 ) = LWKOPT
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZUNMBR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
-*
- IF( APPLYQ ) THEN
-*
-* Apply Q
-*
- IF( NQ.GE.K ) THEN
-*
-* Q was determined by a call to ZGEBRD with nq >= k
-*
- CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, IINFO )
- ELSE IF( NQ.GT.1 ) THEN
-*
-* Q was determined by a call to ZGEBRD with nq < k
-*
- IF( LEFT ) THEN
- MI = M - 1
- NI = N
- I1 = 2
- I2 = 1
- ELSE
- MI = M
- NI = N - 1
- I1 = 1
- I2 = 2
- END IF
- CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
- $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
- END IF
- ELSE
-*
-* Apply P
-*
- IF( NOTRAN ) THEN
- TRANST = 'C'
- ELSE
- TRANST = 'N'
- END IF
- IF( NQ.GT.K ) THEN
-*
-* P was determined by a call to ZGEBRD with nq > k
-*
- CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, IINFO )
- ELSE IF( NQ.GT.1 ) THEN
-*
-* P was determined by a call to ZGEBRD with nq <= k
-*
- IF( LEFT ) THEN
- MI = M - 1
- NI = N
- I1 = 2
- I2 = 1
- ELSE
- MI = M
- NI = N - 1
- I1 = 1
- I2 = 2
- END IF
- CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
- $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
- END IF
- END IF
- WORK( 1 ) = LWKOPT
- RETURN
-*
-* End of ZUNMBR
-*
- END