summaryrefslogtreecommitdiff
path: root/src/lib/lapack/ztrsen.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/ztrsen.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/ztrsen.f')
-rw-r--r--src/lib/lapack/ztrsen.f359
1 files changed, 0 insertions, 359 deletions
diff --git a/src/lib/lapack/ztrsen.f b/src/lib/lapack/ztrsen.f
deleted file mode 100644
index a07a22f6..00000000
--- a/src/lib/lapack/ztrsen.f
+++ /dev/null
@@ -1,359 +0,0 @@
- SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
- $ SEP, WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
-*
-* .. Scalar Arguments ..
- CHARACTER COMPQ, JOB
- INTEGER INFO, LDQ, LDT, LWORK, M, N
- DOUBLE PRECISION S, SEP
-* ..
-* .. Array Arguments ..
- LOGICAL SELECT( * )
- COMPLEX*16 Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZTRSEN reorders the Schur factorization of a complex matrix
-* A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in
-* the leading positions on the diagonal of the upper triangular matrix
-* T, and the leading columns of Q form an orthonormal basis of the
-* corresponding right invariant subspace.
-*
-* Optionally the routine computes the reciprocal condition numbers of
-* the cluster of eigenvalues and/or the invariant subspace.
-*
-* Arguments
-* =========
-*
-* JOB (input) CHARACTER*1
-* Specifies whether condition numbers are required for the
-* cluster of eigenvalues (S) or the invariant subspace (SEP):
-* = 'N': none;
-* = 'E': for eigenvalues only (S);
-* = 'V': for invariant subspace only (SEP);
-* = 'B': for both eigenvalues and invariant subspace (S and
-* SEP).
-*
-* COMPQ (input) CHARACTER*1
-* = 'V': update the matrix Q of Schur vectors;
-* = 'N': do not update Q.
-*
-* SELECT (input) LOGICAL array, dimension (N)
-* SELECT specifies the eigenvalues in the selected cluster. To
-* select the j-th eigenvalue, SELECT(j) must be set to .TRUE..
-*
-* N (input) INTEGER
-* The order of the matrix T. N >= 0.
-*
-* T (input/output) COMPLEX*16 array, dimension (LDT,N)
-* On entry, the upper triangular matrix T.
-* On exit, T is overwritten by the reordered matrix T, with the
-* selected eigenvalues as the leading diagonal elements.
-*
-* LDT (input) INTEGER
-* The leading dimension of the array T. LDT >= max(1,N).
-*
-* Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
-* On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
-* On exit, if COMPQ = 'V', Q has been postmultiplied by the
-* unitary transformation matrix which reorders T; the leading M
-* columns of Q form an orthonormal basis for the specified
-* invariant subspace.
-* If COMPQ = 'N', Q is not referenced.
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q.
-* LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
-*
-* W (output) COMPLEX*16 array, dimension (N)
-* The reordered eigenvalues of T, in the same order as they
-* appear on the diagonal of T.
-*
-* M (output) INTEGER
-* The dimension of the specified invariant subspace.
-* 0 <= M <= N.
-*
-* S (output) DOUBLE PRECISION
-* If JOB = 'E' or 'B', S is a lower bound on the reciprocal
-* condition number for the selected cluster of eigenvalues.
-* S cannot underestimate the true reciprocal condition number
-* by more than a factor of sqrt(N). If M = 0 or N, S = 1.
-* If JOB = 'N' or 'V', S is not referenced.
-*
-* SEP (output) DOUBLE PRECISION
-* If JOB = 'V' or 'B', SEP is the estimated reciprocal
-* condition number of the specified invariant subspace. If
-* M = 0 or N, SEP = norm(T).
-* If JOB = 'N' or 'E', SEP is not referenced.
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* If JOB = 'N', LWORK >= 1;
-* if JOB = 'E', LWORK = max(1,M*(N-M));
-* if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* Further Details
-* ===============
-*
-* ZTRSEN first collects the selected eigenvalues by computing a unitary
-* transformation Z to move them to the top left corner of T. In other
-* words, the selected eigenvalues are the eigenvalues of T11 in:
-*
-* Z'*T*Z = ( T11 T12 ) n1
-* ( 0 T22 ) n2
-* n1 n2
-*
-* where N = n1+n2 and Z' means the conjugate transpose of Z. The first
-* n1 columns of Z span the specified invariant subspace of T.
-*
-* If T has been obtained from the Schur factorization of a matrix
-* A = Q*T*Q', then the reordered Schur factorization of A is given by
-* A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span the
-* corresponding invariant subspace of A.
-*
-* The reciprocal condition number of the average of the eigenvalues of
-* T11 may be returned in S. S lies between 0 (very badly conditioned)
-* and 1 (very well conditioned). It is computed as follows. First we
-* compute R so that
-*
-* P = ( I R ) n1
-* ( 0 0 ) n2
-* n1 n2
-*
-* is the projector on the invariant subspace associated with T11.
-* R is the solution of the Sylvester equation:
-*
-* T11*R - R*T22 = T12.
-*
-* Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
-* the two-norm of M. Then S is computed as the lower bound
-*
-* (1 + F-norm(R)**2)**(-1/2)
-*
-* on the reciprocal of 2-norm(P), the true reciprocal condition number.
-* S cannot underestimate 1 / 2-norm(P) by more than a factor of
-* sqrt(N).
-*
-* An approximate error bound for the computed average of the
-* eigenvalues of T11 is
-*
-* EPS * norm(T) / S
-*
-* where EPS is the machine precision.
-*
-* The reciprocal condition number of the right invariant subspace
-* spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
-* SEP is defined as the separation of T11 and T22:
-*
-* sep( T11, T22 ) = sigma-min( C )
-*
-* where sigma-min(C) is the smallest singular value of the
-* n1*n2-by-n1*n2 matrix
-*
-* C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
-*
-* I(m) is an m by m identity matrix, and kprod denotes the Kronecker
-* product. We estimate sigma-min(C) by the reciprocal of an estimate of
-* the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
-* cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
-*
-* When SEP is small, small changes in T can cause large changes in
-* the invariant subspace. An approximate bound on the maximum angular
-* error in the computed right invariant subspace is
-*
-* EPS * norm(T) / SEP
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LQUERY, WANTBH, WANTQ, WANTS, WANTSP
- INTEGER IERR, K, KASE, KS, LWMIN, N1, N2, NN
- DOUBLE PRECISION EST, RNORM, SCALE
-* ..
-* .. Local Arrays ..
- INTEGER ISAVE( 3 )
- DOUBLE PRECISION RWORK( 1 )
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION ZLANGE
- EXTERNAL LSAME, ZLANGE
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA, ZLACN2, ZLACPY, ZTREXC, ZTRSYL
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
-* Decode and test the input parameters.
-*
- WANTBH = LSAME( JOB, 'B' )
- WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
- WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
- WANTQ = LSAME( COMPQ, 'V' )
-*
-* Set M to the number of selected eigenvalues.
-*
- M = 0
- DO 10 K = 1, N
- IF( SELECT( K ) )
- $ M = M + 1
- 10 CONTINUE
-*
- N1 = M
- N2 = N - M
- NN = N1*N2
-*
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
-*
- IF( WANTSP ) THEN
- LWMIN = MAX( 1, 2*NN )
- ELSE IF( LSAME( JOB, 'N' ) ) THEN
- LWMIN = 1
- ELSE IF( LSAME( JOB, 'E' ) ) THEN
- LWMIN = MAX( 1, NN )
- END IF
-*
- IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
- $ THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -14
- END IF
-*
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTRSEN', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( M.EQ.N .OR. M.EQ.0 ) THEN
- IF( WANTS )
- $ S = ONE
- IF( WANTSP )
- $ SEP = ZLANGE( '1', N, N, T, LDT, RWORK )
- GO TO 40
- END IF
-*
-* Collect the selected eigenvalues at the top left corner of T.
-*
- KS = 0
- DO 20 K = 1, N
- IF( SELECT( K ) ) THEN
- KS = KS + 1
-*
-* Swap the K-th eigenvalue to position KS.
-*
- IF( K.NE.KS )
- $ CALL ZTREXC( COMPQ, N, T, LDT, Q, LDQ, K, KS, IERR )
- END IF
- 20 CONTINUE
-*
- IF( WANTS ) THEN
-*
-* Solve the Sylvester equation for R:
-*
-* T11*R - R*T22 = scale*T12
-*
- CALL ZLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
- CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
- $ LDT, WORK, N1, SCALE, IERR )
-*
-* Estimate the reciprocal of the condition number of the cluster
-* of eigenvalues.
-*
- RNORM = ZLANGE( 'F', N1, N2, WORK, N1, RWORK )
- IF( RNORM.EQ.ZERO ) THEN
- S = ONE
- ELSE
- S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
- $ SQRT( RNORM ) )
- END IF
- END IF
-*
- IF( WANTSP ) THEN
-*
-* Estimate sep(T11,T22).
-*
- EST = ZERO
- KASE = 0
- 30 CONTINUE
- CALL ZLACN2( NN, WORK( NN+1 ), WORK, EST, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
-*
-* Solve T11*R - R*T22 = scale*X.
-*
- CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
- $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
- $ IERR )
- ELSE
-*
-* Solve T11'*R - R*T22' = scale*X.
-*
- CALL ZTRSYL( 'C', 'C', -1, N1, N2, T, LDT,
- $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
- $ IERR )
- END IF
- GO TO 30
- END IF
-*
- SEP = SCALE / EST
- END IF
-*
- 40 CONTINUE
-*
-* Copy reordered eigenvalues to W.
-*
- DO 50 K = 1, N
- W( K ) = T( K, K )
- 50 CONTINUE
-*
- WORK( 1 ) = LWMIN
-*
- RETURN
-*
-* End of ZTRSEN
-*
- END