diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/ztgsy2.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/ztgsy2.f')
-rw-r--r-- | src/lib/lapack/ztgsy2.f | 361 |
1 files changed, 0 insertions, 361 deletions
diff --git a/src/lib/lapack/ztgsy2.f b/src/lib/lapack/ztgsy2.f deleted file mode 100644 index 82ec5eb1..00000000 --- a/src/lib/lapack/ztgsy2.f +++ /dev/null @@ -1,361 +0,0 @@ - SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, - $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, - $ INFO ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER TRANS - INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N - DOUBLE PRECISION RDSCAL, RDSUM, SCALE -* .. -* .. Array Arguments .. - COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), - $ D( LDD, * ), E( LDE, * ), F( LDF, * ) -* .. -* -* Purpose -* ======= -* -* ZTGSY2 solves the generalized Sylvester equation -* -* A * R - L * B = scale * C (1) -* D * R - L * E = scale * F -* -* using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, -* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, -* N-by-N and M-by-N, respectively. A, B, D and E are upper triangular -* (i.e., (A,D) and (B,E) in generalized Schur form). -* -* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output -* scaling factor chosen to avoid overflow. -* -* In matrix notation solving equation (1) corresponds to solve -* Zx = scale * b, where Z is defined as -* -* Z = [ kron(In, A) -kron(B', Im) ] (2) -* [ kron(In, D) -kron(E', Im) ], -* -* Ik is the identity matrix of size k and X' is the transpose of X. -* kron(X, Y) is the Kronecker product between the matrices X and Y. -* -* If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b -* is solved for, which is equivalent to solve for R and L in -* -* A' * R + D' * L = scale * C (3) -* R * B' + L * E' = scale * -F -* -* This case is used to compute an estimate of Dif[(A, D), (B, E)] = -* = sigma_min(Z) using reverse communicaton with ZLACON. -* -* ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL -* of an upper bound on the separation between to matrix pairs. Then -* the input (A, D), (B, E) are sub-pencils of two matrix pairs in -* ZTGSYL. -* -* Arguments -* ========= -* -* TRANS (input) CHARACTER*1 -* = 'N', solve the generalized Sylvester equation (1). -* = 'T': solve the 'transposed' system (3). -* -* IJOB (input) INTEGER -* Specifies what kind of functionality to be performed. -* =0: solve (1) only. -* =1: A contribution from this subsystem to a Frobenius -* norm-based estimate of the separation between two matrix -* pairs is computed. (look ahead strategy is used). -* =2: A contribution from this subsystem to a Frobenius -* norm-based estimate of the separation between two matrix -* pairs is computed. (DGECON on sub-systems is used.) -* Not referenced if TRANS = 'T'. -* -* M (input) INTEGER -* On entry, M specifies the order of A and D, and the row -* dimension of C, F, R and L. -* -* N (input) INTEGER -* On entry, N specifies the order of B and E, and the column -* dimension of C, F, R and L. -* -* A (input) COMPLEX*16 array, dimension (LDA, M) -* On entry, A contains an upper triangular matrix. -* -* LDA (input) INTEGER -* The leading dimension of the matrix A. LDA >= max(1, M). -* -* B (input) COMPLEX*16 array, dimension (LDB, N) -* On entry, B contains an upper triangular matrix. -* -* LDB (input) INTEGER -* The leading dimension of the matrix B. LDB >= max(1, N). -* -* C (input/output) COMPLEX*16 array, dimension (LDC, N) -* On entry, C contains the right-hand-side of the first matrix -* equation in (1). -* On exit, if IJOB = 0, C has been overwritten by the solution -* R. -* -* LDC (input) INTEGER -* The leading dimension of the matrix C. LDC >= max(1, M). -* -* D (input) COMPLEX*16 array, dimension (LDD, M) -* On entry, D contains an upper triangular matrix. -* -* LDD (input) INTEGER -* The leading dimension of the matrix D. LDD >= max(1, M). -* -* E (input) COMPLEX*16 array, dimension (LDE, N) -* On entry, E contains an upper triangular matrix. -* -* LDE (input) INTEGER -* The leading dimension of the matrix E. LDE >= max(1, N). -* -* F (input/output) COMPLEX*16 array, dimension (LDF, N) -* On entry, F contains the right-hand-side of the second matrix -* equation in (1). -* On exit, if IJOB = 0, F has been overwritten by the solution -* L. -* -* LDF (input) INTEGER -* The leading dimension of the matrix F. LDF >= max(1, M). -* -* SCALE (output) DOUBLE PRECISION -* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions -* R and L (C and F on entry) will hold the solutions to a -* slightly perturbed system but the input matrices A, B, D and -* E have not been changed. If SCALE = 0, R and L will hold the -* solutions to the homogeneous system with C = F = 0. -* Normally, SCALE = 1. -* -* RDSUM (input/output) DOUBLE PRECISION -* On entry, the sum of squares of computed contributions to -* the Dif-estimate under computation by ZTGSYL, where the -* scaling factor RDSCAL (see below) has been factored out. -* On exit, the corresponding sum of squares updated with the -* contributions from the current sub-system. -* If TRANS = 'T' RDSUM is not touched. -* NOTE: RDSUM only makes sense when ZTGSY2 is called by -* ZTGSYL. -* -* RDSCAL (input/output) DOUBLE PRECISION -* On entry, scaling factor used to prevent overflow in RDSUM. -* On exit, RDSCAL is updated w.r.t. the current contributions -* in RDSUM. -* If TRANS = 'T', RDSCAL is not touched. -* NOTE: RDSCAL only makes sense when ZTGSY2 is called by -* ZTGSYL. -* -* INFO (output) INTEGER -* On exit, if INFO is set to -* =0: Successful exit -* <0: If INFO = -i, input argument number i is illegal. -* >0: The matrix pairs (A, D) and (B, E) have common or very -* close eigenvalues. -* -* Further Details -* =============== -* -* Based on contributions by -* Bo Kagstrom and Peter Poromaa, Department of Computing Science, -* Umea University, S-901 87 Umea, Sweden. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - INTEGER LDZ - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 ) -* .. -* .. Local Scalars .. - LOGICAL NOTRAN - INTEGER I, IERR, J, K - DOUBLE PRECISION SCALOC - COMPLEX*16 ALPHA -* .. -* .. Local Arrays .. - INTEGER IPIV( LDZ ), JPIV( LDZ ) - COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ ) -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. External Subroutines .. - EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL -* .. -* .. Intrinsic Functions .. - INTRINSIC DCMPLX, DCONJG, MAX -* .. -* .. Executable Statements .. -* -* Decode and test input parameters -* - INFO = 0 - IERR = 0 - NOTRAN = LSAME( TRANS, 'N' ) - IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN - INFO = -1 - ELSE IF( NOTRAN ) THEN - IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN - INFO = -2 - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( M.LE.0 ) THEN - INFO = -3 - ELSE IF( N.LE.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -10 - ELSE IF( LDD.LT.MAX( 1, M ) ) THEN - INFO = -12 - ELSE IF( LDE.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDF.LT.MAX( 1, M ) ) THEN - INFO = -16 - END IF - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZTGSY2', -INFO ) - RETURN - END IF -* - IF( NOTRAN ) THEN -* -* Solve (I, J) - system -* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) -* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) -* for I = M, M - 1, ..., 1; J = 1, 2, ..., N -* - SCALE = ONE - SCALOC = ONE - DO 30 J = 1, N - DO 20 I = M, 1, -1 -* -* Build 2 by 2 system -* - Z( 1, 1 ) = A( I, I ) - Z( 2, 1 ) = D( I, I ) - Z( 1, 2 ) = -B( J, J ) - Z( 2, 2 ) = -E( J, J ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( I, J ) - RHS( 2 ) = F( I, J ) -* -* Solve Z * x = RHS -* - CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR - IF( IJOB.EQ.0 ) THEN - CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 10 K = 1, N - CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), - $ C( 1, K ), 1 ) - CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), - $ F( 1, K ), 1 ) - 10 CONTINUE - SCALE = SCALE*SCALOC - END IF - ELSE - CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL, - $ IPIV, JPIV ) - END IF -* -* Unpack solution vector(s) -* - C( I, J ) = RHS( 1 ) - F( I, J ) = RHS( 2 ) -* -* Substitute R(I, J) and L(I, J) into remaining equation. -* - IF( I.GT.1 ) THEN - ALPHA = -RHS( 1 ) - CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 ) - CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 ) - END IF - IF( J.LT.N ) THEN - CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB, - $ C( I, J+1 ), LDC ) - CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE, - $ F( I, J+1 ), LDF ) - END IF -* - 20 CONTINUE - 30 CONTINUE - ELSE -* -* Solve transposed (I, J) - system: -* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) -* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) -* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 -* - SCALE = ONE - SCALOC = ONE - DO 80 I = 1, M - DO 70 J = N, 1, -1 -* -* Build 2 by 2 system Z' -* - Z( 1, 1 ) = DCONJG( A( I, I ) ) - Z( 2, 1 ) = -DCONJG( B( J, J ) ) - Z( 1, 2 ) = DCONJG( D( I, I ) ) - Z( 2, 2 ) = -DCONJG( E( J, J ) ) -* -* -* Set up right hand side(s) -* - RHS( 1 ) = C( I, J ) - RHS( 2 ) = F( I, J ) -* -* Solve Z' * x = RHS -* - CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR - CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 40 K = 1, N - CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ), - $ 1 ) - CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ), - $ 1 ) - 40 CONTINUE - SCALE = SCALE*SCALOC - END IF -* -* Unpack solution vector(s) -* - C( I, J ) = RHS( 1 ) - F( I, J ) = RHS( 2 ) -* -* Substitute R(I, J) and L(I, J) into remaining equation. -* - DO 50 K = 1, J - 1 - F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) + - $ RHS( 2 )*DCONJG( E( K, J ) ) - 50 CONTINUE - DO 60 K = I + 1, M - C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) - - $ DCONJG( D( I, K ) )*RHS( 2 ) - 60 CONTINUE -* - 70 CONTINUE - 80 CONTINUE - END IF - RETURN -* -* End of ZTGSY2 -* - END |