summaryrefslogtreecommitdiff
path: root/src/lib/lapack/ztgex2.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/ztgex2.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/ztgex2.f')
-rw-r--r--src/lib/lapack/ztgex2.f265
1 files changed, 0 insertions, 265 deletions
diff --git a/src/lib/lapack/ztgex2.f b/src/lib/lapack/ztgex2.f
deleted file mode 100644
index a0c42aad..00000000
--- a/src/lib/lapack/ztgex2.f
+++ /dev/null
@@ -1,265 +0,0 @@
- SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
- $ LDZ, J1, INFO )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- LOGICAL WANTQ, WANTZ
- INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
-* ..
-* .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ Z( LDZ, * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
-* in an upper triangular matrix pair (A, B) by an unitary equivalence
-* transformation.
-*
-* (A, B) must be in generalized Schur canonical form, that is, A and
-* B are both upper triangular.
-*
-* Optionally, the matrices Q and Z of generalized Schur vectors are
-* updated.
-*
-* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
-* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
-*
-*
-* Arguments
-* =========
-*
-* WANTQ (input) LOGICAL
-* .TRUE. : update the left transformation matrix Q;
-* .FALSE.: do not update Q.
-*
-* WANTZ (input) LOGICAL
-* .TRUE. : update the right transformation matrix Z;
-* .FALSE.: do not update Z.
-*
-* N (input) INTEGER
-* The order of the matrices A and B. N >= 0.
-*
-* A (input/output) COMPLEX*16 arrays, dimensions (LDA,N)
-* On entry, the matrix A in the pair (A, B).
-* On exit, the updated matrix A.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* B (input/output) COMPLEX*16 arrays, dimensions (LDB,N)
-* On entry, the matrix B in the pair (A, B).
-* On exit, the updated matrix B.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* Q (input/output) COMPLEX*16 array, dimension (LDZ,N)
-* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
-* the updated matrix Q.
-* Not referenced if WANTQ = .FALSE..
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q. LDQ >= 1;
-* If WANTQ = .TRUE., LDQ >= N.
-*
-* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
-* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
-* the updated matrix Z.
-* Not referenced if WANTZ = .FALSE..
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1;
-* If WANTZ = .TRUE., LDZ >= N.
-*
-* J1 (input) INTEGER
-* The index to the first block (A11, B11).
-*
-* INFO (output) INTEGER
-* =0: Successful exit.
-* =1: The transformed matrix pair (A, B) would be too far
-* from generalized Schur form; the problem is ill-
-* conditioned.
-*
-*
-* Further Details
-* ===============
-*
-* Based on contributions by
-* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
-* Umea University, S-901 87 Umea, Sweden.
-*
-* In the current code both weak and strong stability tests are
-* performed. The user can omit the strong stability test by changing
-* the internal logical parameter WANDS to .FALSE.. See ref. [2] for
-* details.
-*
-* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
-* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
-* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
-* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
-*
-* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
-* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
-* Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
-* Department of Computing Science, Umea University, S-901 87 Umea,
-* Sweden, 1994. Also as LAPACK Working Note 87. To appear in
-* Numerical Algorithms, 1996.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION TEN
- PARAMETER ( TEN = 10.0D+0 )
- INTEGER LDST
- PARAMETER ( LDST = 2 )
- LOGICAL WANDS
- PARAMETER ( WANDS = .TRUE. )
-* ..
-* .. Local Scalars ..
- LOGICAL DTRONG, WEAK
- INTEGER I, M
- DOUBLE PRECISION CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
- $ THRESH, WS
- COMPLEX*16 CDUM, F, G, SQ, SZ
-* ..
-* .. Local Arrays ..
- COMPLEX*16 S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
-* ..
-* .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
-* ..
-* .. External Subroutines ..
- EXTERNAL ZLACPY, ZLARTG, ZLASSQ, ZROT
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCONJG, MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
- INFO = 0
-*
-* Quick return if possible
-*
- IF( N.LE.1 )
- $ RETURN
-*
- M = LDST
- WEAK = .FALSE.
- DTRONG = .FALSE.
-*
-* Make a local copy of selected block in (A, B)
-*
- CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
- CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
-*
-* Compute the threshold for testing the acceptance of swapping.
-*
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
- CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
- CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
- SA = SCALE*SQRT( SUM )
- THRESH = MAX( TEN*EPS*SA, SMLNUM )
-*
-* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
-* using Givens rotations and perform the swap tentatively.
-*
- F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
- G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
- SA = ABS( S( 2, 2 ) )
- SB = ABS( T( 2, 2 ) )
- CALL ZLARTG( G, F, CZ, SZ, CDUM )
- SZ = -SZ
- CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
- CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
- IF( SA.GE.SB ) THEN
- CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
- ELSE
- CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
- END IF
- CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
- CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
-*
-* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
-*
- WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
- WEAK = WS.LE.THRESH
- IF( .NOT.WEAK )
- $ GO TO 20
-*
- IF( WANDS ) THEN
-*
-* Strong stability test:
-* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B)))
-*
- CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
- CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
- CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
- CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
- CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
- CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
- DO 10 I = 1, 2
- WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
- WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
- WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
- WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
- 10 CONTINUE
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
- SS = SCALE*SQRT( SUM )
- DTRONG = SS.LE.THRESH
- IF( .NOT.DTRONG )
- $ GO TO 20
- END IF
-*
-* If the swap is accepted ("weakly" and "strongly"), apply the
-* equivalence transformations to the original matrix pair (A,B)
-*
- CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
- CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
-*
-* Set N1 by N2 (2,1) blocks to 0
-*
- A( J1+1, J1 ) = CZERO
- B( J1+1, J1 ) = CZERO
-*
-* Accumulate transformations into Q and Z if requested.
-*
- IF( WANTZ )
- $ CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- IF( WANTQ )
- $ CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
- $ DCONJG( SQ ) )
-*
-* Exit with INFO = 0 if swap was successfully performed.
-*
- RETURN
-*
-* Exit with INFO = 1 if swap was rejected.
-*
- 20 CONTINUE
- INFO = 1
- RETURN
-*
-* End of ZTGEX2
-*
- END