diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zlanhe.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zlanhe.f')
-rw-r--r-- | src/lib/lapack/zlanhe.f | 187 |
1 files changed, 0 insertions, 187 deletions
diff --git a/src/lib/lapack/zlanhe.f b/src/lib/lapack/zlanhe.f deleted file mode 100644 index 86e57fcd..00000000 --- a/src/lib/lapack/zlanhe.f +++ /dev/null @@ -1,187 +0,0 @@ - DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER NORM, UPLO - INTEGER LDA, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION WORK( * ) - COMPLEX*16 A( LDA, * ) -* .. -* -* Purpose -* ======= -* -* ZLANHE returns the value of the one norm, or the Frobenius norm, or -* the infinity norm, or the element of largest absolute value of a -* complex hermitian matrix A. -* -* Description -* =========== -* -* ZLANHE returns the value -* -* ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm' -* ( -* ( norm1(A), NORM = '1', 'O' or 'o' -* ( -* ( normI(A), NORM = 'I' or 'i' -* ( -* ( normF(A), NORM = 'F', 'f', 'E' or 'e' -* -* where norm1 denotes the one norm of a matrix (maximum column sum), -* normI denotes the infinity norm of a matrix (maximum row sum) and -* normF denotes the Frobenius norm of a matrix (square root of sum of -* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies the value to be returned in ZLANHE as described -* above. -* -* UPLO (input) CHARACTER*1 -* Specifies whether the upper or lower triangular part of the -* hermitian matrix A is to be referenced. -* = 'U': Upper triangular part of A is referenced -* = 'L': Lower triangular part of A is referenced -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. When N = 0, ZLANHE is -* set to zero. -* -* A (input) COMPLEX*16 array, dimension (LDA,N) -* The hermitian matrix A. If UPLO = 'U', the leading n by n -* upper triangular part of A contains the upper triangular part -* of the matrix A, and the strictly lower triangular part of A -* is not referenced. If UPLO = 'L', the leading n by n lower -* triangular part of A contains the lower triangular part of -* the matrix A, and the strictly upper triangular part of A is -* not referenced. Note that the imaginary parts of the diagonal -* elements need not be set and are assumed to be zero. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(N,1). -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), -* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, -* WORK is not referenced. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ONE, ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Local Scalars .. - INTEGER I, J - DOUBLE PRECISION ABSA, SCALE, SUM, VALUE -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. External Subroutines .. - EXTERNAL ZLASSQ -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, DBLE, MAX, SQRT -* .. -* .. Executable Statements .. -* - IF( N.EQ.0 ) THEN - VALUE = ZERO - ELSE IF( LSAME( NORM, 'M' ) ) THEN -* -* Find max(abs(A(i,j))). -* - VALUE = ZERO - IF( LSAME( UPLO, 'U' ) ) THEN - DO 20 J = 1, N - DO 10 I = 1, J - 1 - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 10 CONTINUE - VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) ) - 20 CONTINUE - ELSE - DO 40 J = 1, N - VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) ) - DO 30 I = J + 1, N - VALUE = MAX( VALUE, ABS( A( I, J ) ) ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. - $ ( NORM.EQ.'1' ) ) THEN -* -* Find normI(A) ( = norm1(A), since A is hermitian). -* - VALUE = ZERO - IF( LSAME( UPLO, 'U' ) ) THEN - DO 60 J = 1, N - SUM = ZERO - DO 50 I = 1, J - 1 - ABSA = ABS( A( I, J ) ) - SUM = SUM + ABSA - WORK( I ) = WORK( I ) + ABSA - 50 CONTINUE - WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) ) - 60 CONTINUE - DO 70 I = 1, N - VALUE = MAX( VALUE, WORK( I ) ) - 70 CONTINUE - ELSE - DO 80 I = 1, N - WORK( I ) = ZERO - 80 CONTINUE - DO 100 J = 1, N - SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) ) - DO 90 I = J + 1, N - ABSA = ABS( A( I, J ) ) - SUM = SUM + ABSA - WORK( I ) = WORK( I ) + ABSA - 90 CONTINUE - VALUE = MAX( VALUE, SUM ) - 100 CONTINUE - END IF - ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN -* -* Find normF(A). -* - SCALE = ZERO - SUM = ONE - IF( LSAME( UPLO, 'U' ) ) THEN - DO 110 J = 2, N - CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) - 110 CONTINUE - ELSE - DO 120 J = 1, N - 1 - CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) - 120 CONTINUE - END IF - SUM = 2*SUM - DO 130 I = 1, N - IF( DBLE( A( I, I ) ).NE.ZERO ) THEN - ABSA = ABS( DBLE( A( I, I ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA - ELSE - SUM = SUM + ( ABSA / SCALE )**2 - END IF - END IF - 130 CONTINUE - VALUE = SCALE*SQRT( SUM ) - END IF -* - ZLANHE = VALUE - RETURN -* -* End of ZLANHE -* - END |