summaryrefslogtreecommitdiff
path: root/src/lib/lapack/zlabrd.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zlabrd.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zlabrd.f')
-rw-r--r--src/lib/lapack/zlabrd.f328
1 files changed, 0 insertions, 328 deletions
diff --git a/src/lib/lapack/zlabrd.f b/src/lib/lapack/zlabrd.f
deleted file mode 100644
index fb482c84..00000000
--- a/src/lib/lapack/zlabrd.f
+++ /dev/null
@@ -1,328 +0,0 @@
- SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
- $ LDY )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER LDA, LDX, LDY, M, N, NB
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
- $ Y( LDY, * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZLABRD reduces the first NB rows and columns of a complex general
-* m by n matrix A to upper or lower real bidiagonal form by a unitary
-* transformation Q' * A * P, and returns the matrices X and Y which
-* are needed to apply the transformation to the unreduced part of A.
-*
-* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
-* bidiagonal form.
-*
-* This is an auxiliary routine called by ZGEBRD
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows in the matrix A.
-*
-* N (input) INTEGER
-* The number of columns in the matrix A.
-*
-* NB (input) INTEGER
-* The number of leading rows and columns of A to be reduced.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the m by n general matrix to be reduced.
-* On exit, the first NB rows and columns of the matrix are
-* overwritten; the rest of the array is unchanged.
-* If m >= n, elements on and below the diagonal in the first NB
-* columns, with the array TAUQ, represent the unitary
-* matrix Q as a product of elementary reflectors; and
-* elements above the diagonal in the first NB rows, with the
-* array TAUP, represent the unitary matrix P as a product
-* of elementary reflectors.
-* If m < n, elements below the diagonal in the first NB
-* columns, with the array TAUQ, represent the unitary
-* matrix Q as a product of elementary reflectors, and
-* elements on and above the diagonal in the first NB rows,
-* with the array TAUP, represent the unitary matrix P as
-* a product of elementary reflectors.
-* See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* D (output) DOUBLE PRECISION array, dimension (NB)
-* The diagonal elements of the first NB rows and columns of
-* the reduced matrix. D(i) = A(i,i).
-*
-* E (output) DOUBLE PRECISION array, dimension (NB)
-* The off-diagonal elements of the first NB rows and columns of
-* the reduced matrix.
-*
-* TAUQ (output) COMPLEX*16 array dimension (NB)
-* The scalar factors of the elementary reflectors which
-* represent the unitary matrix Q. See Further Details.
-*
-* TAUP (output) COMPLEX*16 array, dimension (NB)
-* The scalar factors of the elementary reflectors which
-* represent the unitary matrix P. See Further Details.
-*
-* X (output) COMPLEX*16 array, dimension (LDX,NB)
-* The m-by-nb matrix X required to update the unreduced part
-* of A.
-*
-* LDX (input) INTEGER
-* The leading dimension of the array X. LDX >= max(1,M).
-*
-* Y (output) COMPLEX*16 array, dimension (LDY,NB)
-* The n-by-nb matrix Y required to update the unreduced part
-* of A.
-*
-* LDY (input) INTEGER
-* The leading dimension of the array Y. LDY >= max(1,N).
-*
-* Further Details
-* ===============
-*
-* The matrices Q and P are represented as products of elementary
-* reflectors:
-*
-* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
-*
-* Each H(i) and G(i) has the form:
-*
-* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
-*
-* where tauq and taup are complex scalars, and v and u are complex
-* vectors.
-*
-* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
-* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
-* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
-* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
-* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
-*
-* The elements of the vectors v and u together form the m-by-nb matrix
-* V and the nb-by-n matrix U' which are needed, with X and Y, to apply
-* the transformation to the unreduced part of the matrix, using a block
-* update of the form: A := A - V*Y' - X*U'.
-*
-* The contents of A on exit are illustrated by the following examples
-* with nb = 2:
-*
-* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
-*
-* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
-* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
-* ( v1 v2 a a a ) ( v1 1 a a a a )
-* ( v1 v2 a a a ) ( v1 v2 a a a a )
-* ( v1 v2 a a a ) ( v1 v2 a a a a )
-* ( v1 v2 a a a )
-*
-* where a denotes an element of the original matrix which is unchanged,
-* vi denotes an element of the vector defining H(i), and ui an element
-* of the vector defining G(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ) )
-* ..
-* .. Local Scalars ..
- INTEGER I
- COMPLEX*16 ALPHA
-* ..
-* .. External Subroutines ..
- EXTERNAL ZGEMV, ZLACGV, ZLARFG, ZSCAL
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MIN
-* ..
-* .. Executable Statements ..
-*
-* Quick return if possible
-*
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
-*
- IF( M.GE.N ) THEN
-*
-* Reduce to upper bidiagonal form
-*
- DO 10 I = 1, NB
-*
-* Update A(i:m,i)
-*
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
-*
-* Generate reflection Q(i) to annihilate A(i+1:m,i)
-*
- ALPHA = A( I, I )
- CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
- $ TAUQ( I ) )
- D( I ) = ALPHA
- IF( I.LT.N ) THEN
- A( I, I ) = ONE
-*
-* Compute Y(i+1:n,i)
-*
- CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
- $ A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
- $ Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
- $ A( I, 1 ), LDA, A( I, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
- $ X( I, 1 ), LDX, A( I, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
- $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
- $ Y( I+1, I ), 1 )
- CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
-*
-* Update A(i,i+1:n)
-*
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- CALL ZLACGV( I, A( I, 1 ), LDA )
- CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
- CALL ZLACGV( I, A( I, 1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
- $ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
- $ A( I, I+1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
-*
-* Generate reflection P(i) to annihilate A(i,i+2:n)
-*
- ALPHA = A( I, I+1 )
- CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
- $ TAUP( I ) )
- E( I ) = ALPHA
- A( I, I+1 ) = ONE
-*
-* Compute X(i+1:m,i)
-*
- CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
- $ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
- $ X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
- $ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- END IF
- 10 CONTINUE
- ELSE
-*
-* Reduce to lower bidiagonal form
-*
- DO 20 I = 1, NB
-*
-* Update A(i,i:n)
-*
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
- $ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
- $ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
- $ LDA )
- CALL ZLACGV( I-1, X( I, 1 ), LDX )
-*
-* Generate reflection P(i) to annihilate A(i,i+1:n)
-*
- ALPHA = A( I, I )
- CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
- $ TAUP( I ) )
- D( I ) = ALPHA
- IF( I.LT.M ) THEN
- A( I, I ) = ONE
-*
-* Compute X(i+1:m,i)
-*
- CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
- $ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
- $ X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
- $ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
- $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
- CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
-*
-* Update A(i+1:m,i)
-*
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
- CALL ZLACGV( I-1, Y( I, 1 ), LDY )
- CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
- $ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
-*
-* Generate reflection Q(i) to annihilate A(i+2:m,i)
-*
- ALPHA = A( I+1, I )
- CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
- $ TAUQ( I ) )
- E( I ) = ALPHA
- A( I+1, I ) = ONE
-*
-* Compute Y(i+1:n,i)
-*
- CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
- $ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
- $ Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
- $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
- $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
- $ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
- $ Y( 1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
- $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
- $ Y( I+1, I ), 1 )
- CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
- ELSE
- CALL ZLACGV( N-I+1, A( I, I ), LDA )
- END IF
- 20 CONTINUE
- END IF
- RETURN
-*
-* End of ZLABRD
-*
- END