diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zlabrd.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zlabrd.f')
-rw-r--r-- | src/lib/lapack/zlabrd.f | 328 |
1 files changed, 0 insertions, 328 deletions
diff --git a/src/lib/lapack/zlabrd.f b/src/lib/lapack/zlabrd.f deleted file mode 100644 index fb482c84..00000000 --- a/src/lib/lapack/zlabrd.f +++ /dev/null @@ -1,328 +0,0 @@ - SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, - $ LDY ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER LDA, LDX, LDY, M, N, NB -* .. -* .. Array Arguments .. - DOUBLE PRECISION D( * ), E( * ) - COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), - $ Y( LDY, * ) -* .. -* -* Purpose -* ======= -* -* ZLABRD reduces the first NB rows and columns of a complex general -* m by n matrix A to upper or lower real bidiagonal form by a unitary -* transformation Q' * A * P, and returns the matrices X and Y which -* are needed to apply the transformation to the unreduced part of A. -* -* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower -* bidiagonal form. -* -* This is an auxiliary routine called by ZGEBRD -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows in the matrix A. -* -* N (input) INTEGER -* The number of columns in the matrix A. -* -* NB (input) INTEGER -* The number of leading rows and columns of A to be reduced. -* -* A (input/output) COMPLEX*16 array, dimension (LDA,N) -* On entry, the m by n general matrix to be reduced. -* On exit, the first NB rows and columns of the matrix are -* overwritten; the rest of the array is unchanged. -* If m >= n, elements on and below the diagonal in the first NB -* columns, with the array TAUQ, represent the unitary -* matrix Q as a product of elementary reflectors; and -* elements above the diagonal in the first NB rows, with the -* array TAUP, represent the unitary matrix P as a product -* of elementary reflectors. -* If m < n, elements below the diagonal in the first NB -* columns, with the array TAUQ, represent the unitary -* matrix Q as a product of elementary reflectors, and -* elements on and above the diagonal in the first NB rows, -* with the array TAUP, represent the unitary matrix P as -* a product of elementary reflectors. -* See Further Details. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* D (output) DOUBLE PRECISION array, dimension (NB) -* The diagonal elements of the first NB rows and columns of -* the reduced matrix. D(i) = A(i,i). -* -* E (output) DOUBLE PRECISION array, dimension (NB) -* The off-diagonal elements of the first NB rows and columns of -* the reduced matrix. -* -* TAUQ (output) COMPLEX*16 array dimension (NB) -* The scalar factors of the elementary reflectors which -* represent the unitary matrix Q. See Further Details. -* -* TAUP (output) COMPLEX*16 array, dimension (NB) -* The scalar factors of the elementary reflectors which -* represent the unitary matrix P. See Further Details. -* -* X (output) COMPLEX*16 array, dimension (LDX,NB) -* The m-by-nb matrix X required to update the unreduced part -* of A. -* -* LDX (input) INTEGER -* The leading dimension of the array X. LDX >= max(1,M). -* -* Y (output) COMPLEX*16 array, dimension (LDY,NB) -* The n-by-nb matrix Y required to update the unreduced part -* of A. -* -* LDY (input) INTEGER -* The leading dimension of the array Y. LDY >= max(1,N). -* -* Further Details -* =============== -* -* The matrices Q and P are represented as products of elementary -* reflectors: -* -* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) -* -* Each H(i) and G(i) has the form: -* -* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' -* -* where tauq and taup are complex scalars, and v and u are complex -* vectors. -* -* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in -* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in -* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). -* -* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in -* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in -* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). -* -* The elements of the vectors v and u together form the m-by-nb matrix -* V and the nb-by-n matrix U' which are needed, with X and Y, to apply -* the transformation to the unreduced part of the matrix, using a block -* update of the form: A := A - V*Y' - X*U'. -* -* The contents of A on exit are illustrated by the following examples -* with nb = 2: -* -* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): -* -* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) -* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) -* ( v1 v2 a a a ) ( v1 1 a a a a ) -* ( v1 v2 a a a ) ( v1 v2 a a a a ) -* ( v1 v2 a a a ) ( v1 v2 a a a a ) -* ( v1 v2 a a a ) -* -* where a denotes an element of the original matrix which is unchanged, -* vi denotes an element of the vector defining H(i), and ui an element -* of the vector defining G(i). -* -* ===================================================================== -* -* .. Parameters .. - COMPLEX*16 ZERO, ONE - PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ), - $ ONE = ( 1.0D+0, 0.0D+0 ) ) -* .. -* .. Local Scalars .. - INTEGER I - COMPLEX*16 ALPHA -* .. -* .. External Subroutines .. - EXTERNAL ZGEMV, ZLACGV, ZLARFG, ZSCAL -* .. -* .. Intrinsic Functions .. - INTRINSIC MIN -* .. -* .. Executable Statements .. -* -* Quick return if possible -* - IF( M.LE.0 .OR. N.LE.0 ) - $ RETURN -* - IF( M.GE.N ) THEN -* -* Reduce to upper bidiagonal form -* - DO 10 I = 1, NB -* -* Update A(i:m,i) -* - CALL ZLACGV( I-1, Y( I, 1 ), LDY ) - CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ), - $ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 ) - CALL ZLACGV( I-1, Y( I, 1 ), LDY ) - CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ), - $ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 ) -* -* Generate reflection Q(i) to annihilate A(i+1:m,i) -* - ALPHA = A( I, I ) - CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1, - $ TAUQ( I ) ) - D( I ) = ALPHA - IF( I.LT.N ) THEN - A( I, I ) = ONE -* -* Compute Y(i+1:n,i) -* - CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE, - $ A( I, I+1 ), LDA, A( I, I ), 1, ZERO, - $ Y( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE, - $ A( I, 1 ), LDA, A( I, I ), 1, ZERO, - $ Y( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ), - $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE, - $ X( I, 1 ), LDX, A( I, I ), 1, ZERO, - $ Y( 1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE, - $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE, - $ Y( I+1, I ), 1 ) - CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) -* -* Update A(i,i+1:n) -* - CALL ZLACGV( N-I, A( I, I+1 ), LDA ) - CALL ZLACGV( I, A( I, 1 ), LDA ) - CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ), - $ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA ) - CALL ZLACGV( I, A( I, 1 ), LDA ) - CALL ZLACGV( I-1, X( I, 1 ), LDX ) - CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE, - $ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE, - $ A( I, I+1 ), LDA ) - CALL ZLACGV( I-1, X( I, 1 ), LDX ) -* -* Generate reflection P(i) to annihilate A(i,i+2:n) -* - ALPHA = A( I, I+1 ) - CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA, - $ TAUP( I ) ) - E( I ) = ALPHA - A( I, I+1 ) = ONE -* -* Compute X(i+1:m,i) -* - CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ), - $ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE, - $ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO, - $ X( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ), - $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) - CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ), - $ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ), - $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) - CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) - CALL ZLACGV( N-I, A( I, I+1 ), LDA ) - END IF - 10 CONTINUE - ELSE -* -* Reduce to lower bidiagonal form -* - DO 20 I = 1, NB -* -* Update A(i,i:n) -* - CALL ZLACGV( N-I+1, A( I, I ), LDA ) - CALL ZLACGV( I-1, A( I, 1 ), LDA ) - CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ), - $ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA ) - CALL ZLACGV( I-1, A( I, 1 ), LDA ) - CALL ZLACGV( I-1, X( I, 1 ), LDX ) - CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE, - $ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ), - $ LDA ) - CALL ZLACGV( I-1, X( I, 1 ), LDX ) -* -* Generate reflection P(i) to annihilate A(i,i+1:n) -* - ALPHA = A( I, I ) - CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA, - $ TAUP( I ) ) - D( I ) = ALPHA - IF( I.LT.M ) THEN - A( I, I ) = ONE -* -* Compute X(i+1:m,i) -* - CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ), - $ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE, - $ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO, - $ X( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ), - $ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) - CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ), - $ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ), - $ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 ) - CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 ) - CALL ZLACGV( N-I+1, A( I, I ), LDA ) -* -* Update A(i+1:m,i) -* - CALL ZLACGV( I-1, Y( I, 1 ), LDY ) - CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ), - $ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 ) - CALL ZLACGV( I-1, Y( I, 1 ), LDY ) - CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ), - $ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 ) -* -* Generate reflection Q(i) to annihilate A(i+2:m,i) -* - ALPHA = A( I+1, I ) - CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1, - $ TAUQ( I ) ) - E( I ) = ALPHA - A( I+1, I ) = ONE -* -* Compute Y(i+1:n,i) -* - CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE, - $ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO, - $ Y( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE, - $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO, - $ Y( 1, I ), 1 ) - CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ), - $ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE, - $ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO, - $ Y( 1, I ), 1 ) - CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE, - $ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE, - $ Y( I+1, I ), 1 ) - CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 ) - ELSE - CALL ZLACGV( N-I+1, A( I, I ), LDA ) - END IF - 20 CONTINUE - END IF - RETURN -* -* End of ZLABRD -* - END |