summaryrefslogtreecommitdiff
path: root/src/lib/lapack/zgeev.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zgeev.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zgeev.f')
-rw-r--r--src/lib/lapack/zgeev.f396
1 files changed, 0 insertions, 396 deletions
diff --git a/src/lib/lapack/zgeev.f b/src/lib/lapack/zgeev.f
deleted file mode 100644
index 0fa66307..00000000
--- a/src/lib/lapack/zgeev.f
+++ /dev/null
@@ -1,396 +0,0 @@
- SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
- $ WORK, LWORK, RWORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ W( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
-* eigenvalues and, optionally, the left and/or right eigenvectors.
-*
-* The right eigenvector v(j) of A satisfies
-* A * v(j) = lambda(j) * v(j)
-* where lambda(j) is its eigenvalue.
-* The left eigenvector u(j) of A satisfies
-* u(j)**H * A = lambda(j) * u(j)**H
-* where u(j)**H denotes the conjugate transpose of u(j).
-*
-* The computed eigenvectors are normalized to have Euclidean norm
-* equal to 1 and largest component real.
-*
-* Arguments
-* =========
-*
-* JOBVL (input) CHARACTER*1
-* = 'N': left eigenvectors of A are not computed;
-* = 'V': left eigenvectors of are computed.
-*
-* JOBVR (input) CHARACTER*1
-* = 'N': right eigenvectors of A are not computed;
-* = 'V': right eigenvectors of A are computed.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the N-by-N matrix A.
-* On exit, A has been overwritten.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* W (output) COMPLEX*16 array, dimension (N)
-* W contains the computed eigenvalues.
-*
-* VL (output) COMPLEX*16 array, dimension (LDVL,N)
-* If JOBVL = 'V', the left eigenvectors u(j) are stored one
-* after another in the columns of VL, in the same order
-* as their eigenvalues.
-* If JOBVL = 'N', VL is not referenced.
-* u(j) = VL(:,j), the j-th column of VL.
-*
-* LDVL (input) INTEGER
-* The leading dimension of the array VL. LDVL >= 1; if
-* JOBVL = 'V', LDVL >= N.
-*
-* VR (output) COMPLEX*16 array, dimension (LDVR,N)
-* If JOBVR = 'V', the right eigenvectors v(j) are stored one
-* after another in the columns of VR, in the same order
-* as their eigenvalues.
-* If JOBVR = 'N', VR is not referenced.
-* v(j) = VR(:,j), the j-th column of VR.
-*
-* LDVR (input) INTEGER
-* The leading dimension of the array VR. LDVR >= 1; if
-* JOBVR = 'V', LDVR >= N.
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,2*N).
-* For good performance, LWORK must generally be larger.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* > 0: if INFO = i, the QR algorithm failed to compute all the
-* eigenvalues, and no eigenvectors have been computed;
-* elements and i+1:N of W contain eigenvalues which have
-* converged.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
- CHARACTER SIDE
- INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
- $ IWRK, K, MAXWRK, MINWRK, NOUT
- DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
- COMPLEX*16 TMP
-* ..
-* .. Local Arrays ..
- LOGICAL SELECT( 1 )
- DOUBLE PRECISION DUM( 1 )
-* ..
-* .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
- $ ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX, ILAENV
- DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE
- EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- WANTVL = LSAME( JOBVL, 'V' )
- WANTVR = LSAME( JOBVR, 'V' )
- IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- END IF
-*
-* Compute workspace
-* (Note: Comments in the code beginning "Workspace:" describe the
-* minimal amount of workspace needed at that point in the code,
-* as well as the preferred amount for good performance.
-* CWorkspace refers to complex workspace, and RWorkspace to real
-* workspace. NB refers to the optimal block size for the
-* immediately following subroutine, as returned by ILAENV.
-* HSWORK refers to the workspace preferred by ZHSEQR, as
-* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
-* the worst case.)
-*
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- ELSE
- MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 2*N
- IF( WANTVL ) THEN
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
- $ ' ', N, 1, N, -1 ) )
- CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
- $ WORK, -1, INFO )
- ELSE IF( WANTVR ) THEN
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
- $ ' ', N, 1, N, -1 ) )
- CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
- $ WORK, -1, INFO )
- ELSE
- CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
- $ WORK, -1, INFO )
- END IF
- HSWORK = WORK( 1 )
- MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
- END IF
- WORK( 1 ) = MAXWRK
-*
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEEV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.EQ.0 )
- $ RETURN
-*
-* Get machine constants
-*
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
-*
-* Scale A if max element outside range [SMLNUM,BIGNUM]
-*
- ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
-*
-* Balance the matrix
-* (CWorkspace: none)
-* (RWorkspace: need N)
-*
- IBAL = 1
- CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
-*
-* Reduce to upper Hessenberg form
-* (CWorkspace: need 2*N, prefer N+N*NB)
-* (RWorkspace: none)
-*
- ITAU = 1
- IWRK = ITAU + N
- CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
-*
- IF( WANTVL ) THEN
-*
-* Want left eigenvectors
-* Copy Householder vectors to VL
-*
- SIDE = 'L'
- CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
-*
-* Generate unitary matrix in VL
-* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
-* (RWorkspace: none)
-*
- CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
-*
-* Perform QR iteration, accumulating Schur vectors in VL
-* (CWorkspace: need 1, prefer HSWORK (see comments) )
-* (RWorkspace: none)
-*
- IWRK = ITAU
- CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
-*
- IF( WANTVR ) THEN
-*
-* Want left and right eigenvectors
-* Copy Schur vectors to VR
-*
- SIDE = 'B'
- CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
- END IF
-*
- ELSE IF( WANTVR ) THEN
-*
-* Want right eigenvectors
-* Copy Householder vectors to VR
-*
- SIDE = 'R'
- CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
-*
-* Generate unitary matrix in VR
-* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
-* (RWorkspace: none)
-*
- CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
-*
-* Perform QR iteration, accumulating Schur vectors in VR
-* (CWorkspace: need 1, prefer HSWORK (see comments) )
-* (RWorkspace: none)
-*
- IWRK = ITAU
- CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
-*
- ELSE
-*
-* Compute eigenvalues only
-* (CWorkspace: need 1, prefer HSWORK (see comments) )
-* (RWorkspace: none)
-*
- IWRK = ITAU
- CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
- $ WORK( IWRK ), LWORK-IWRK+1, INFO )
- END IF
-*
-* If INFO > 0 from ZHSEQR, then quit
-*
- IF( INFO.GT.0 )
- $ GO TO 50
-*
- IF( WANTVL .OR. WANTVR ) THEN
-*
-* Compute left and/or right eigenvectors
-* (CWorkspace: need 2*N)
-* (RWorkspace: need 2*N)
-*
- IRWORK = IBAL + N
- CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
- $ N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
- END IF
-*
- IF( WANTVL ) THEN
-*
-* Undo balancing of left eigenvectors
-* (CWorkspace: none)
-* (RWorkspace: need N)
-*
- CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
- $ IERR )
-*
-* Normalize left eigenvectors and make largest component real
-*
- DO 20 I = 1, N
- SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
- CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
- DO 10 K = 1, N
- RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
- $ DIMAG( VL( K, I ) )**2
- 10 CONTINUE
- K = IDAMAX( N, RWORK( IRWORK ), 1 )
- TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
- CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
- VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
- 20 CONTINUE
- END IF
-*
- IF( WANTVR ) THEN
-*
-* Undo balancing of right eigenvectors
-* (CWorkspace: none)
-* (RWorkspace: need N)
-*
- CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
- $ IERR )
-*
-* Normalize right eigenvectors and make largest component real
-*
- DO 40 I = 1, N
- SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
- CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
- DO 30 K = 1, N
- RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
- $ DIMAG( VR( K, I ) )**2
- 30 CONTINUE
- K = IDAMAX( N, RWORK( IRWORK ), 1 )
- TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
- CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
- VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
- 40 CONTINUE
- END IF
-*
-* Undo scaling if necessary
-*
- 50 CONTINUE
- IF( SCALEA ) THEN
- CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
- $ MAX( N-INFO, 1 ), IERR )
- IF( INFO.GT.0 ) THEN
- CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
- END IF
- END IF
-*
- WORK( 1 ) = MAXWRK
- RETURN
-*
-* End of ZGEEV
-*
- END