diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zgeev.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zgeev.f')
-rw-r--r-- | src/lib/lapack/zgeev.f | 396 |
1 files changed, 0 insertions, 396 deletions
diff --git a/src/lib/lapack/zgeev.f b/src/lib/lapack/zgeev.f deleted file mode 100644 index 0fa66307..00000000 --- a/src/lib/lapack/zgeev.f +++ /dev/null @@ -1,396 +0,0 @@ - SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, - $ WORK, LWORK, RWORK, INFO ) -* -* -- LAPACK driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER JOBVL, JOBVR - INTEGER INFO, LDA, LDVL, LDVR, LWORK, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION RWORK( * ) - COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), - $ W( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the -* eigenvalues and, optionally, the left and/or right eigenvectors. -* -* The right eigenvector v(j) of A satisfies -* A * v(j) = lambda(j) * v(j) -* where lambda(j) is its eigenvalue. -* The left eigenvector u(j) of A satisfies -* u(j)**H * A = lambda(j) * u(j)**H -* where u(j)**H denotes the conjugate transpose of u(j). -* -* The computed eigenvectors are normalized to have Euclidean norm -* equal to 1 and largest component real. -* -* Arguments -* ========= -* -* JOBVL (input) CHARACTER*1 -* = 'N': left eigenvectors of A are not computed; -* = 'V': left eigenvectors of are computed. -* -* JOBVR (input) CHARACTER*1 -* = 'N': right eigenvectors of A are not computed; -* = 'V': right eigenvectors of A are computed. -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) COMPLEX*16 array, dimension (LDA,N) -* On entry, the N-by-N matrix A. -* On exit, A has been overwritten. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* W (output) COMPLEX*16 array, dimension (N) -* W contains the computed eigenvalues. -* -* VL (output) COMPLEX*16 array, dimension (LDVL,N) -* If JOBVL = 'V', the left eigenvectors u(j) are stored one -* after another in the columns of VL, in the same order -* as their eigenvalues. -* If JOBVL = 'N', VL is not referenced. -* u(j) = VL(:,j), the j-th column of VL. -* -* LDVL (input) INTEGER -* The leading dimension of the array VL. LDVL >= 1; if -* JOBVL = 'V', LDVL >= N. -* -* VR (output) COMPLEX*16 array, dimension (LDVR,N) -* If JOBVR = 'V', the right eigenvectors v(j) are stored one -* after another in the columns of VR, in the same order -* as their eigenvalues. -* If JOBVR = 'N', VR is not referenced. -* v(j) = VR(:,j), the j-th column of VR. -* -* LDVR (input) INTEGER -* The leading dimension of the array VR. LDVR >= 1; if -* JOBVR = 'V', LDVR >= N. -* -* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,2*N). -* For good performance, LWORK must generally be larger. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* > 0: if INFO = i, the QR algorithm failed to compute all the -* eigenvalues, and no eigenvectors have been computed; -* elements and i+1:N of W contain eigenvalues which have -* converged. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY, SCALEA, WANTVL, WANTVR - CHARACTER SIDE - INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU, - $ IWRK, K, MAXWRK, MINWRK, NOUT - DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM - COMPLEX*16 TMP -* .. -* .. Local Arrays .. - LOGICAL SELECT( 1 ) - DOUBLE PRECISION DUM( 1 ) -* .. -* .. External Subroutines .. - EXTERNAL DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD, - $ ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR -* .. -* .. External Functions .. - LOGICAL LSAME - INTEGER IDAMAX, ILAENV - DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE - EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE -* .. -* .. Intrinsic Functions .. - INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT -* .. -* .. Executable Statements .. -* -* Test the input arguments -* - INFO = 0 - LQUERY = ( LWORK.EQ.-1 ) - WANTVL = LSAME( JOBVL, 'V' ) - WANTVR = LSAME( JOBVR, 'V' ) - IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN - INFO = -1 - ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -5 - ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN - INFO = -8 - ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN - INFO = -10 - END IF -* -* Compute workspace -* (Note: Comments in the code beginning "Workspace:" describe the -* minimal amount of workspace needed at that point in the code, -* as well as the preferred amount for good performance. -* CWorkspace refers to complex workspace, and RWorkspace to real -* workspace. NB refers to the optimal block size for the -* immediately following subroutine, as returned by ILAENV. -* HSWORK refers to the workspace preferred by ZHSEQR, as -* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, -* the worst case.) -* - IF( INFO.EQ.0 ) THEN - IF( N.EQ.0 ) THEN - MINWRK = 1 - MAXWRK = 1 - ELSE - MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 ) - MINWRK = 2*N - IF( WANTVL ) THEN - MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR', - $ ' ', N, 1, N, -1 ) ) - CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL, - $ WORK, -1, INFO ) - ELSE IF( WANTVR ) THEN - MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR', - $ ' ', N, 1, N, -1 ) ) - CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR, - $ WORK, -1, INFO ) - ELSE - CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR, - $ WORK, -1, INFO ) - END IF - HSWORK = WORK( 1 ) - MAXWRK = MAX( MAXWRK, HSWORK, MINWRK ) - END IF - WORK( 1 ) = MAXWRK -* - IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN - INFO = -12 - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZGEEV ', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Get machine constants -* - EPS = DLAMCH( 'P' ) - SMLNUM = DLAMCH( 'S' ) - BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) - SMLNUM = SQRT( SMLNUM ) / EPS - BIGNUM = ONE / SMLNUM -* -* Scale A if max element outside range [SMLNUM,BIGNUM] -* - ANRM = ZLANGE( 'M', N, N, A, LDA, DUM ) - SCALEA = .FALSE. - IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN - SCALEA = .TRUE. - CSCALE = SMLNUM - ELSE IF( ANRM.GT.BIGNUM ) THEN - SCALEA = .TRUE. - CSCALE = BIGNUM - END IF - IF( SCALEA ) - $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) -* -* Balance the matrix -* (CWorkspace: none) -* (RWorkspace: need N) -* - IBAL = 1 - CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) -* -* Reduce to upper Hessenberg form -* (CWorkspace: need 2*N, prefer N+N*NB) -* (RWorkspace: none) -* - ITAU = 1 - IWRK = ITAU + N - CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), - $ LWORK-IWRK+1, IERR ) -* - IF( WANTVL ) THEN -* -* Want left eigenvectors -* Copy Householder vectors to VL -* - SIDE = 'L' - CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL ) -* -* Generate unitary matrix in VL -* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) -* (RWorkspace: none) -* - CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ), - $ LWORK-IWRK+1, IERR ) -* -* Perform QR iteration, accumulating Schur vectors in VL -* (CWorkspace: need 1, prefer HSWORK (see comments) ) -* (RWorkspace: none) -* - IWRK = ITAU - CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL, - $ WORK( IWRK ), LWORK-IWRK+1, INFO ) -* - IF( WANTVR ) THEN -* -* Want left and right eigenvectors -* Copy Schur vectors to VR -* - SIDE = 'B' - CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR ) - END IF -* - ELSE IF( WANTVR ) THEN -* -* Want right eigenvectors -* Copy Householder vectors to VR -* - SIDE = 'R' - CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR ) -* -* Generate unitary matrix in VR -* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) -* (RWorkspace: none) -* - CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ), - $ LWORK-IWRK+1, IERR ) -* -* Perform QR iteration, accumulating Schur vectors in VR -* (CWorkspace: need 1, prefer HSWORK (see comments) ) -* (RWorkspace: none) -* - IWRK = ITAU - CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR, - $ WORK( IWRK ), LWORK-IWRK+1, INFO ) -* - ELSE -* -* Compute eigenvalues only -* (CWorkspace: need 1, prefer HSWORK (see comments) ) -* (RWorkspace: none) -* - IWRK = ITAU - CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR, - $ WORK( IWRK ), LWORK-IWRK+1, INFO ) - END IF -* -* If INFO > 0 from ZHSEQR, then quit -* - IF( INFO.GT.0 ) - $ GO TO 50 -* - IF( WANTVL .OR. WANTVR ) THEN -* -* Compute left and/or right eigenvectors -* (CWorkspace: need 2*N) -* (RWorkspace: need 2*N) -* - IRWORK = IBAL + N - CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR, - $ N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR ) - END IF -* - IF( WANTVL ) THEN -* -* Undo balancing of left eigenvectors -* (CWorkspace: none) -* (RWorkspace: need N) -* - CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL, - $ IERR ) -* -* Normalize left eigenvectors and make largest component real -* - DO 20 I = 1, N - SCL = ONE / DZNRM2( N, VL( 1, I ), 1 ) - CALL ZDSCAL( N, SCL, VL( 1, I ), 1 ) - DO 10 K = 1, N - RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 + - $ DIMAG( VL( K, I ) )**2 - 10 CONTINUE - K = IDAMAX( N, RWORK( IRWORK ), 1 ) - TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) ) - CALL ZSCAL( N, TMP, VL( 1, I ), 1 ) - VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO ) - 20 CONTINUE - END IF -* - IF( WANTVR ) THEN -* -* Undo balancing of right eigenvectors -* (CWorkspace: none) -* (RWorkspace: need N) -* - CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR, - $ IERR ) -* -* Normalize right eigenvectors and make largest component real -* - DO 40 I = 1, N - SCL = ONE / DZNRM2( N, VR( 1, I ), 1 ) - CALL ZDSCAL( N, SCL, VR( 1, I ), 1 ) - DO 30 K = 1, N - RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 + - $ DIMAG( VR( K, I ) )**2 - 30 CONTINUE - K = IDAMAX( N, RWORK( IRWORK ), 1 ) - TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) ) - CALL ZSCAL( N, TMP, VR( 1, I ), 1 ) - VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO ) - 40 CONTINUE - END IF -* -* Undo scaling if necessary -* - 50 CONTINUE - IF( SCALEA ) THEN - CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ), - $ MAX( N-INFO, 1 ), IERR ) - IF( INFO.GT.0 ) THEN - CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR ) - END IF - END IF -* - WORK( 1 ) = MAXWRK - RETURN -* -* End of ZGEEV -* - END |