diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/zgebrd.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/zgebrd.f')
-rw-r--r-- | src/lib/lapack/zgebrd.f | 268 |
1 files changed, 0 insertions, 268 deletions
diff --git a/src/lib/lapack/zgebrd.f b/src/lib/lapack/zgebrd.f deleted file mode 100644 index 4f97bd7e..00000000 --- a/src/lib/lapack/zgebrd.f +++ /dev/null @@ -1,268 +0,0 @@ - SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, - $ INFO ) -* -* -- LAPACK routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, M, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION D( * ), E( * ) - COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* ZGEBRD reduces a general complex M-by-N matrix A to upper or lower -* bidiagonal form B by a unitary transformation: Q**H * A * P = B. -* -* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows in the matrix A. M >= 0. -* -* N (input) INTEGER -* The number of columns in the matrix A. N >= 0. -* -* A (input/output) COMPLEX*16 array, dimension (LDA,N) -* On entry, the M-by-N general matrix to be reduced. -* On exit, -* if m >= n, the diagonal and the first superdiagonal are -* overwritten with the upper bidiagonal matrix B; the -* elements below the diagonal, with the array TAUQ, represent -* the unitary matrix Q as a product of elementary -* reflectors, and the elements above the first superdiagonal, -* with the array TAUP, represent the unitary matrix P as -* a product of elementary reflectors; -* if m < n, the diagonal and the first subdiagonal are -* overwritten with the lower bidiagonal matrix B; the -* elements below the first subdiagonal, with the array TAUQ, -* represent the unitary matrix Q as a product of -* elementary reflectors, and the elements above the diagonal, -* with the array TAUP, represent the unitary matrix P as -* a product of elementary reflectors. -* See Further Details. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* D (output) DOUBLE PRECISION array, dimension (min(M,N)) -* The diagonal elements of the bidiagonal matrix B: -* D(i) = A(i,i). -* -* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) -* The off-diagonal elements of the bidiagonal matrix B: -* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; -* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. -* -* TAUQ (output) COMPLEX*16 array dimension (min(M,N)) -* The scalar factors of the elementary reflectors which -* represent the unitary matrix Q. See Further Details. -* -* TAUP (output) COMPLEX*16 array, dimension (min(M,N)) -* The scalar factors of the elementary reflectors which -* represent the unitary matrix P. See Further Details. -* -* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The length of the array WORK. LWORK >= max(1,M,N). -* For optimum performance LWORK >= (M+N)*NB, where NB -* is the optimal blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit. -* < 0: if INFO = -i, the i-th argument had an illegal value. -* -* Further Details -* =============== -* -* The matrices Q and P are represented as products of elementary -* reflectors: -* -* If m >= n, -* -* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) -* -* Each H(i) and G(i) has the form: -* -* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' -* -* where tauq and taup are complex scalars, and v and u are complex -* vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in -* A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in -* A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). -* -* If m < n, -* -* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) -* -* Each H(i) and G(i) has the form: -* -* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' -* -* where tauq and taup are complex scalars, and v and u are complex -* vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in -* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in -* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). -* -* The contents of A on exit are illustrated by the following examples: -* -* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): -* -* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) -* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) -* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) -* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) -* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) -* ( v1 v2 v3 v4 v5 ) -* -* where d and e denote diagonal and off-diagonal elements of B, vi -* denotes an element of the vector defining H(i), and ui an element of -* the vector defining G(i). -* -* ===================================================================== -* -* .. Parameters .. - COMPLEX*16 ONE - PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB, - $ NBMIN, NX - DOUBLE PRECISION WS -* .. -* .. External Subroutines .. - EXTERNAL XERBLA, ZGEBD2, ZGEMM, ZLABRD -* .. -* .. Intrinsic Functions .. - INTRINSIC DBLE, MAX, MIN -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. Executable Statements .. -* -* Test the input parameters -* - INFO = 0 - NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) ) - LWKOPT = ( M+N )*NB - WORK( 1 ) = DBLE( LWKOPT ) - LQUERY = ( LWORK.EQ.-1 ) - IF( M.LT.0 ) THEN - INFO = -1 - ELSE IF( N.LT.0 ) THEN - INFO = -2 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN - INFO = -10 - END IF - IF( INFO.LT.0 ) THEN - CALL XERBLA( 'ZGEBRD', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - MINMN = MIN( M, N ) - IF( MINMN.EQ.0 ) THEN - WORK( 1 ) = 1 - RETURN - END IF -* - WS = MAX( M, N ) - LDWRKX = M - LDWRKY = N -* - IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN -* -* Set the crossover point NX. -* - NX = MAX( NB, ILAENV( 3, 'ZGEBRD', ' ', M, N, -1, -1 ) ) -* -* Determine when to switch from blocked to unblocked code. -* - IF( NX.LT.MINMN ) THEN - WS = ( M+N )*NB - IF( LWORK.LT.WS ) THEN -* -* Not enough work space for the optimal NB, consider using -* a smaller block size. -* - NBMIN = ILAENV( 2, 'ZGEBRD', ' ', M, N, -1, -1 ) - IF( LWORK.GE.( M+N )*NBMIN ) THEN - NB = LWORK / ( M+N ) - ELSE - NB = 1 - NX = MINMN - END IF - END IF - END IF - ELSE - NX = MINMN - END IF -* - DO 30 I = 1, MINMN - NX, NB -* -* Reduce rows and columns i:i+ib-1 to bidiagonal form and return -* the matrices X and Y which are needed to update the unreduced -* part of the matrix -* - CALL ZLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ), - $ TAUQ( I ), TAUP( I ), WORK, LDWRKX, - $ WORK( LDWRKX*NB+1 ), LDWRKY ) -* -* Update the trailing submatrix A(i+ib:m,i+ib:n), using -* an update of the form A := A - V*Y' - X*U' -* - CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1, - $ N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA, - $ WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE, - $ A( I+NB, I+NB ), LDA ) - CALL ZGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1, - $ NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA, - $ ONE, A( I+NB, I+NB ), LDA ) -* -* Copy diagonal and off-diagonal elements of B back into A -* - IF( M.GE.N ) THEN - DO 10 J = I, I + NB - 1 - A( J, J ) = D( J ) - A( J, J+1 ) = E( J ) - 10 CONTINUE - ELSE - DO 20 J = I, I + NB - 1 - A( J, J ) = D( J ) - A( J+1, J ) = E( J ) - 20 CONTINUE - END IF - 30 CONTINUE -* -* Use unblocked code to reduce the remainder of the matrix -* - CALL ZGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ), - $ TAUQ( I ), TAUP( I ), WORK, IINFO ) - WORK( 1 ) = WS - RETURN -* -* End of ZGEBRD -* - END |