diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dtgsy2.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dtgsy2.f')
-rw-r--r-- | src/lib/lapack/dtgsy2.f | 956 |
1 files changed, 0 insertions, 956 deletions
diff --git a/src/lib/lapack/dtgsy2.f b/src/lib/lapack/dtgsy2.f deleted file mode 100644 index 3ebc912f..00000000 --- a/src/lib/lapack/dtgsy2.f +++ /dev/null @@ -1,956 +0,0 @@ - SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, - $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, - $ IWORK, PQ, INFO ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER TRANS - INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N, - $ PQ - DOUBLE PRECISION RDSCAL, RDSUM, SCALE -* .. -* .. Array Arguments .. - INTEGER IWORK( * ) - DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), - $ D( LDD, * ), E( LDE, * ), F( LDF, * ) -* .. -* -* Purpose -* ======= -* -* DTGSY2 solves the generalized Sylvester equation: -* -* A * R - L * B = scale * C (1) -* D * R - L * E = scale * F, -* -* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, -* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, -* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) -* must be in generalized Schur canonical form, i.e. A, B are upper -* quasi triangular and D, E are upper triangular. The solution (R, L) -* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor -* chosen to avoid overflow. -* -* In matrix notation solving equation (1) corresponds to solve -* Z*x = scale*b, where Z is defined as -* -* Z = [ kron(In, A) -kron(B', Im) ] (2) -* [ kron(In, D) -kron(E', Im) ], -* -* Ik is the identity matrix of size k and X' is the transpose of X. -* kron(X, Y) is the Kronecker product between the matrices X and Y. -* In the process of solving (1), we solve a number of such systems -* where Dim(In), Dim(In) = 1 or 2. -* -* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, -* which is equivalent to solve for R and L in -* -* A' * R + D' * L = scale * C (3) -* R * B' + L * E' = scale * -F -* -* This case is used to compute an estimate of Dif[(A, D), (B, E)] = -* sigma_min(Z) using reverse communicaton with DLACON. -* -* DTGSY2 also (IJOB >= 1) contributes to the computation in STGSYL -* of an upper bound on the separation between to matrix pairs. Then -* the input (A, D), (B, E) are sub-pencils of the matrix pair in -* DTGSYL. See STGSYL for details. -* -* Arguments -* ========= -* -* TRANS (input) CHARACTER*1 -* = 'N', solve the generalized Sylvester equation (1). -* = 'T': solve the 'transposed' system (3). -* -* IJOB (input) INTEGER -* Specifies what kind of functionality to be performed. -* = 0: solve (1) only. -* = 1: A contribution from this subsystem to a Frobenius -* norm-based estimate of the separation between two matrix -* pairs is computed. (look ahead strategy is used). -* = 2: A contribution from this subsystem to a Frobenius -* norm-based estimate of the separation between two matrix -* pairs is computed. (DGECON on sub-systems is used.) -* Not referenced if TRANS = 'T'. -* -* M (input) INTEGER -* On entry, M specifies the order of A and D, and the row -* dimension of C, F, R and L. -* -* N (input) INTEGER -* On entry, N specifies the order of B and E, and the column -* dimension of C, F, R and L. -* -* A (input) DOUBLE PRECISION array, dimension (LDA, M) -* On entry, A contains an upper quasi triangular matrix. -* -* LDA (input) INTEGER -* The leading dimension of the matrix A. LDA >= max(1, M). -* -* B (input) DOUBLE PRECISION array, dimension (LDB, N) -* On entry, B contains an upper quasi triangular matrix. -* -* LDB (input) INTEGER -* The leading dimension of the matrix B. LDB >= max(1, N). -* -* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) -* On entry, C contains the right-hand-side of the first matrix -* equation in (1). -* On exit, if IJOB = 0, C has been overwritten by the -* solution R. -* -* LDC (input) INTEGER -* The leading dimension of the matrix C. LDC >= max(1, M). -* -* D (input) DOUBLE PRECISION array, dimension (LDD, M) -* On entry, D contains an upper triangular matrix. -* -* LDD (input) INTEGER -* The leading dimension of the matrix D. LDD >= max(1, M). -* -* E (input) DOUBLE PRECISION array, dimension (LDE, N) -* On entry, E contains an upper triangular matrix. -* -* LDE (input) INTEGER -* The leading dimension of the matrix E. LDE >= max(1, N). -* -* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) -* On entry, F contains the right-hand-side of the second matrix -* equation in (1). -* On exit, if IJOB = 0, F has been overwritten by the -* solution L. -* -* LDF (input) INTEGER -* The leading dimension of the matrix F. LDF >= max(1, M). -* -* SCALE (output) DOUBLE PRECISION -* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions -* R and L (C and F on entry) will hold the solutions to a -* slightly perturbed system but the input matrices A, B, D and -* E have not been changed. If SCALE = 0, R and L will hold the -* solutions to the homogeneous system with C = F = 0. Normally, -* SCALE = 1. -* -* RDSUM (input/output) DOUBLE PRECISION -* On entry, the sum of squares of computed contributions to -* the Dif-estimate under computation by DTGSYL, where the -* scaling factor RDSCAL (see below) has been factored out. -* On exit, the corresponding sum of squares updated with the -* contributions from the current sub-system. -* If TRANS = 'T' RDSUM is not touched. -* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. -* -* RDSCAL (input/output) DOUBLE PRECISION -* On entry, scaling factor used to prevent overflow in RDSUM. -* On exit, RDSCAL is updated w.r.t. the current contributions -* in RDSUM. -* If TRANS = 'T', RDSCAL is not touched. -* NOTE: RDSCAL only makes sense when DTGSY2 is called by -* DTGSYL. -* -* IWORK (workspace) INTEGER array, dimension (M+N+2) -* -* PQ (output) INTEGER -* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and -* 8-by-8) solved by this routine. -* -* INFO (output) INTEGER -* On exit, if INFO is set to -* =0: Successful exit -* <0: If INFO = -i, the i-th argument had an illegal value. -* >0: The matrix pairs (A, D) and (B, E) have common or very -* close eigenvalues. -* -* Further Details -* =============== -* -* Based on contributions by -* Bo Kagstrom and Peter Poromaa, Department of Computing Science, -* Umea University, S-901 87 Umea, Sweden. -* -* ===================================================================== -* Replaced various illegal calls to DCOPY by calls to DLASET. -* Sven Hammarling, 27/5/02. -* -* .. Parameters .. - INTEGER LDZ - PARAMETER ( LDZ = 8 ) - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL NOTRAN - INTEGER I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1, - $ K, MB, NB, P, Q, ZDIM - DOUBLE PRECISION ALPHA, SCALOC -* .. -* .. Local Arrays .. - INTEGER IPIV( LDZ ), JPIV( LDZ ) - DOUBLE PRECISION RHS( LDZ ), Z( LDZ, LDZ ) -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. External Subroutines .. - EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DGER, DGESC2, - $ DGETC2, DLASET, DLATDF, DSCAL, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX -* .. -* .. Executable Statements .. -* -* Decode and test input parameters -* - INFO = 0 - IERR = 0 - NOTRAN = LSAME( TRANS, 'N' ) - IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN - INFO = -1 - ELSE IF( NOTRAN ) THEN - IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN - INFO = -2 - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( M.LE.0 ) THEN - INFO = -3 - ELSE IF( N.LE.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -10 - ELSE IF( LDD.LT.MAX( 1, M ) ) THEN - INFO = -12 - ELSE IF( LDE.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDF.LT.MAX( 1, M ) ) THEN - INFO = -16 - END IF - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DTGSY2', -INFO ) - RETURN - END IF -* -* Determine block structure of A -* - PQ = 0 - P = 0 - I = 1 - 10 CONTINUE - IF( I.GT.M ) - $ GO TO 20 - P = P + 1 - IWORK( P ) = I - IF( I.EQ.M ) - $ GO TO 20 - IF( A( I+1, I ).NE.ZERO ) THEN - I = I + 2 - ELSE - I = I + 1 - END IF - GO TO 10 - 20 CONTINUE - IWORK( P+1 ) = M + 1 -* -* Determine block structure of B -* - Q = P + 1 - J = 1 - 30 CONTINUE - IF( J.GT.N ) - $ GO TO 40 - Q = Q + 1 - IWORK( Q ) = J - IF( J.EQ.N ) - $ GO TO 40 - IF( B( J+1, J ).NE.ZERO ) THEN - J = J + 2 - ELSE - J = J + 1 - END IF - GO TO 30 - 40 CONTINUE - IWORK( Q+1 ) = N + 1 - PQ = P*( Q-P-1 ) -* - IF( NOTRAN ) THEN -* -* Solve (I, J) - subsystem -* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) -* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) -* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q -* - SCALE = ONE - SCALOC = ONE - DO 120 J = P + 2, Q - JS = IWORK( J ) - JSP1 = JS + 1 - JE = IWORK( J+1 ) - 1 - NB = JE - JS + 1 - DO 110 I = P, 1, -1 -* - IS = IWORK( I ) - ISP1 = IS + 1 - IE = IWORK( I+1 ) - 1 - MB = IE - IS + 1 - ZDIM = MB*NB*2 -* - IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN -* -* Build a 2-by-2 system Z * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = D( IS, IS ) - Z( 1, 2 ) = -B( JS, JS ) - Z( 2, 2 ) = -E( JS, JS ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = F( IS, JS ) -* -* Solve Z * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR -* - IF( IJOB.EQ.0 ) THEN - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, - $ SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 50 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 50 CONTINUE - SCALE = SCALE*SCALOC - END IF - ELSE - CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, - $ RDSCAL, IPIV, JPIV ) - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - F( IS, JS ) = RHS( 2 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( I.GT.1 ) THEN - ALPHA = -RHS( 1 ) - CALL DAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ), - $ 1 ) - CALL DAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ), - $ 1 ) - END IF - IF( J.LT.Q ) THEN - CALL DAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB, - $ C( IS, JE+1 ), LDC ) - CALL DAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE, - $ F( IS, JE+1 ), LDF ) - END IF -* - ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN -* -* Build a 4-by-4 system Z * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = ZERO - Z( 3, 1 ) = D( IS, IS ) - Z( 4, 1 ) = ZERO -* - Z( 1, 2 ) = ZERO - Z( 2, 2 ) = A( IS, IS ) - Z( 3, 2 ) = ZERO - Z( 4, 2 ) = D( IS, IS ) -* - Z( 1, 3 ) = -B( JS, JS ) - Z( 2, 3 ) = -B( JS, JSP1 ) - Z( 3, 3 ) = -E( JS, JS ) - Z( 4, 3 ) = -E( JS, JSP1 ) -* - Z( 1, 4 ) = -B( JSP1, JS ) - Z( 2, 4 ) = -B( JSP1, JSP1 ) - Z( 3, 4 ) = ZERO - Z( 4, 4 ) = -E( JSP1, JSP1 ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = C( IS, JSP1 ) - RHS( 3 ) = F( IS, JS ) - RHS( 4 ) = F( IS, JSP1 ) -* -* Solve Z * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR -* - IF( IJOB.EQ.0 ) THEN - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, - $ SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 60 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 60 CONTINUE - SCALE = SCALE*SCALOC - END IF - ELSE - CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, - $ RDSCAL, IPIV, JPIV ) - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - C( IS, JSP1 ) = RHS( 2 ) - F( IS, JS ) = RHS( 3 ) - F( IS, JSP1 ) = RHS( 4 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( I.GT.1 ) THEN - CALL DGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ), - $ 1, C( 1, JS ), LDC ) - CALL DGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ), - $ 1, F( 1, JS ), LDF ) - END IF - IF( J.LT.Q ) THEN - CALL DAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB, - $ C( IS, JE+1 ), LDC ) - CALL DAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE, - $ F( IS, JE+1 ), LDF ) - CALL DAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB, - $ C( IS, JE+1 ), LDC ) - CALL DAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE, - $ F( IS, JE+1 ), LDF ) - END IF -* - ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN -* -* Build a 4-by-4 system Z * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = A( ISP1, IS ) - Z( 3, 1 ) = D( IS, IS ) - Z( 4, 1 ) = ZERO -* - Z( 1, 2 ) = A( IS, ISP1 ) - Z( 2, 2 ) = A( ISP1, ISP1 ) - Z( 3, 2 ) = D( IS, ISP1 ) - Z( 4, 2 ) = D( ISP1, ISP1 ) -* - Z( 1, 3 ) = -B( JS, JS ) - Z( 2, 3 ) = ZERO - Z( 3, 3 ) = -E( JS, JS ) - Z( 4, 3 ) = ZERO -* - Z( 1, 4 ) = ZERO - Z( 2, 4 ) = -B( JS, JS ) - Z( 3, 4 ) = ZERO - Z( 4, 4 ) = -E( JS, JS ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = C( ISP1, JS ) - RHS( 3 ) = F( IS, JS ) - RHS( 4 ) = F( ISP1, JS ) -* -* Solve Z * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR - IF( IJOB.EQ.0 ) THEN - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, - $ SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 70 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 70 CONTINUE - SCALE = SCALE*SCALOC - END IF - ELSE - CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, - $ RDSCAL, IPIV, JPIV ) - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - C( ISP1, JS ) = RHS( 2 ) - F( IS, JS ) = RHS( 3 ) - F( ISP1, JS ) = RHS( 4 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( I.GT.1 ) THEN - CALL DGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA, - $ RHS( 1 ), 1, ONE, C( 1, JS ), 1 ) - CALL DGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD, - $ RHS( 1 ), 1, ONE, F( 1, JS ), 1 ) - END IF - IF( J.LT.Q ) THEN - CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1, - $ B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC ) - CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1, - $ E( JS, JE+1 ), LDB, F( IS, JE+1 ), LDC ) - END IF -* - ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN -* -* Build an 8-by-8 system Z * x = RHS -* - CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ ) -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = A( ISP1, IS ) - Z( 5, 1 ) = D( IS, IS ) -* - Z( 1, 2 ) = A( IS, ISP1 ) - Z( 2, 2 ) = A( ISP1, ISP1 ) - Z( 5, 2 ) = D( IS, ISP1 ) - Z( 6, 2 ) = D( ISP1, ISP1 ) -* - Z( 3, 3 ) = A( IS, IS ) - Z( 4, 3 ) = A( ISP1, IS ) - Z( 7, 3 ) = D( IS, IS ) -* - Z( 3, 4 ) = A( IS, ISP1 ) - Z( 4, 4 ) = A( ISP1, ISP1 ) - Z( 7, 4 ) = D( IS, ISP1 ) - Z( 8, 4 ) = D( ISP1, ISP1 ) -* - Z( 1, 5 ) = -B( JS, JS ) - Z( 3, 5 ) = -B( JS, JSP1 ) - Z( 5, 5 ) = -E( JS, JS ) - Z( 7, 5 ) = -E( JS, JSP1 ) -* - Z( 2, 6 ) = -B( JS, JS ) - Z( 4, 6 ) = -B( JS, JSP1 ) - Z( 6, 6 ) = -E( JS, JS ) - Z( 8, 6 ) = -E( JS, JSP1 ) -* - Z( 1, 7 ) = -B( JSP1, JS ) - Z( 3, 7 ) = -B( JSP1, JSP1 ) - Z( 7, 7 ) = -E( JSP1, JSP1 ) -* - Z( 2, 8 ) = -B( JSP1, JS ) - Z( 4, 8 ) = -B( JSP1, JSP1 ) - Z( 8, 8 ) = -E( JSP1, JSP1 ) -* -* Set up right hand side(s) -* - K = 1 - II = MB*NB + 1 - DO 80 JJ = 0, NB - 1 - CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 ) - CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 ) - K = K + MB - II = II + MB - 80 CONTINUE -* -* Solve Z * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR - IF( IJOB.EQ.0 ) THEN - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, - $ SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 90 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 90 CONTINUE - SCALE = SCALE*SCALOC - END IF - ELSE - CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, - $ RDSCAL, IPIV, JPIV ) - END IF -* -* Unpack solution vector(s) -* - K = 1 - II = MB*NB + 1 - DO 100 JJ = 0, NB - 1 - CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 ) - CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 ) - K = K + MB - II = II + MB - 100 CONTINUE -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( I.GT.1 ) THEN - CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE, - $ A( 1, IS ), LDA, RHS( 1 ), MB, ONE, - $ C( 1, JS ), LDC ) - CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE, - $ D( 1, IS ), LDD, RHS( 1 ), MB, ONE, - $ F( 1, JS ), LDF ) - END IF - IF( J.LT.Q ) THEN - K = MB*NB + 1 - CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ), - $ MB, B( JS, JE+1 ), LDB, ONE, - $ C( IS, JE+1 ), LDC ) - CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ), - $ MB, E( JS, JE+1 ), LDE, ONE, - $ F( IS, JE+1 ), LDF ) - END IF -* - END IF -* - 110 CONTINUE - 120 CONTINUE - ELSE -* -* Solve (I, J) - subsystem -* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) -* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) -* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 -* - SCALE = ONE - SCALOC = ONE - DO 200 I = 1, P -* - IS = IWORK( I ) - ISP1 = IS + 1 - IE = ( I+1 ) - 1 - MB = IE - IS + 1 - DO 190 J = Q, P + 2, -1 -* - JS = IWORK( J ) - JSP1 = JS + 1 - JE = IWORK( J+1 ) - 1 - NB = JE - JS + 1 - ZDIM = MB*NB*2 - IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN -* -* Build a 2-by-2 system Z' * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = -B( JS, JS ) - Z( 1, 2 ) = D( IS, IS ) - Z( 2, 2 ) = -E( JS, JS ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = F( IS, JS ) -* -* Solve Z' * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR -* - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 130 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 130 CONTINUE - SCALE = SCALE*SCALOC - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - F( IS, JS ) = RHS( 2 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( J.GT.P+2 ) THEN - ALPHA = RHS( 1 ) - CALL DAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ), - $ LDF ) - ALPHA = RHS( 2 ) - CALL DAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ), - $ LDF ) - END IF - IF( I.LT.P ) THEN - ALPHA = -RHS( 1 ) - CALL DAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA, - $ C( IE+1, JS ), 1 ) - ALPHA = -RHS( 2 ) - CALL DAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD, - $ C( IE+1, JS ), 1 ) - END IF -* - ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN -* -* Build a 4-by-4 system Z' * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = ZERO - Z( 3, 1 ) = -B( JS, JS ) - Z( 4, 1 ) = -B( JSP1, JS ) -* - Z( 1, 2 ) = ZERO - Z( 2, 2 ) = A( IS, IS ) - Z( 3, 2 ) = -B( JS, JSP1 ) - Z( 4, 2 ) = -B( JSP1, JSP1 ) -* - Z( 1, 3 ) = D( IS, IS ) - Z( 2, 3 ) = ZERO - Z( 3, 3 ) = -E( JS, JS ) - Z( 4, 3 ) = ZERO -* - Z( 1, 4 ) = ZERO - Z( 2, 4 ) = D( IS, IS ) - Z( 3, 4 ) = -E( JS, JSP1 ) - Z( 4, 4 ) = -E( JSP1, JSP1 ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = C( IS, JSP1 ) - RHS( 3 ) = F( IS, JS ) - RHS( 4 ) = F( IS, JSP1 ) -* -* Solve Z' * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 140 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 140 CONTINUE - SCALE = SCALE*SCALOC - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - C( IS, JSP1 ) = RHS( 2 ) - F( IS, JS ) = RHS( 3 ) - F( IS, JSP1 ) = RHS( 4 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( J.GT.P+2 ) THEN - CALL DAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1, - $ F( IS, 1 ), LDF ) - CALL DAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1, - $ F( IS, 1 ), LDF ) - CALL DAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1, - $ F( IS, 1 ), LDF ) - CALL DAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1, - $ F( IS, 1 ), LDF ) - END IF - IF( I.LT.P ) THEN - CALL DGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA, - $ RHS( 1 ), 1, C( IE+1, JS ), LDC ) - CALL DGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD, - $ RHS( 3 ), 1, C( IE+1, JS ), LDC ) - END IF -* - ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN -* -* Build a 4-by-4 system Z' * x = RHS -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = A( IS, ISP1 ) - Z( 3, 1 ) = -B( JS, JS ) - Z( 4, 1 ) = ZERO -* - Z( 1, 2 ) = A( ISP1, IS ) - Z( 2, 2 ) = A( ISP1, ISP1 ) - Z( 3, 2 ) = ZERO - Z( 4, 2 ) = -B( JS, JS ) -* - Z( 1, 3 ) = D( IS, IS ) - Z( 2, 3 ) = D( IS, ISP1 ) - Z( 3, 3 ) = -E( JS, JS ) - Z( 4, 3 ) = ZERO -* - Z( 1, 4 ) = ZERO - Z( 2, 4 ) = D( ISP1, ISP1 ) - Z( 3, 4 ) = ZERO - Z( 4, 4 ) = -E( JS, JS ) -* -* Set up right hand side(s) -* - RHS( 1 ) = C( IS, JS ) - RHS( 2 ) = C( ISP1, JS ) - RHS( 3 ) = F( IS, JS ) - RHS( 4 ) = F( ISP1, JS ) -* -* Solve Z' * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR -* - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 150 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 150 CONTINUE - SCALE = SCALE*SCALOC - END IF -* -* Unpack solution vector(s) -* - C( IS, JS ) = RHS( 1 ) - C( ISP1, JS ) = RHS( 2 ) - F( IS, JS ) = RHS( 3 ) - F( ISP1, JS ) = RHS( 4 ) -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( J.GT.P+2 ) THEN - CALL DGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ), - $ 1, F( IS, 1 ), LDF ) - CALL DGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ), - $ 1, F( IS, 1 ), LDF ) - END IF - IF( I.LT.P ) THEN - CALL DGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ), - $ LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ), - $ 1 ) - CALL DGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ), - $ LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ), - $ 1 ) - END IF -* - ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN -* -* Build an 8-by-8 system Z' * x = RHS -* - CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ ) -* - Z( 1, 1 ) = A( IS, IS ) - Z( 2, 1 ) = A( IS, ISP1 ) - Z( 5, 1 ) = -B( JS, JS ) - Z( 7, 1 ) = -B( JSP1, JS ) -* - Z( 1, 2 ) = A( ISP1, IS ) - Z( 2, 2 ) = A( ISP1, ISP1 ) - Z( 6, 2 ) = -B( JS, JS ) - Z( 8, 2 ) = -B( JSP1, JS ) -* - Z( 3, 3 ) = A( IS, IS ) - Z( 4, 3 ) = A( IS, ISP1 ) - Z( 5, 3 ) = -B( JS, JSP1 ) - Z( 7, 3 ) = -B( JSP1, JSP1 ) -* - Z( 3, 4 ) = A( ISP1, IS ) - Z( 4, 4 ) = A( ISP1, ISP1 ) - Z( 6, 4 ) = -B( JS, JSP1 ) - Z( 8, 4 ) = -B( JSP1, JSP1 ) -* - Z( 1, 5 ) = D( IS, IS ) - Z( 2, 5 ) = D( IS, ISP1 ) - Z( 5, 5 ) = -E( JS, JS ) -* - Z( 2, 6 ) = D( ISP1, ISP1 ) - Z( 6, 6 ) = -E( JS, JS ) -* - Z( 3, 7 ) = D( IS, IS ) - Z( 4, 7 ) = D( IS, ISP1 ) - Z( 5, 7 ) = -E( JS, JSP1 ) - Z( 7, 7 ) = -E( JSP1, JSP1 ) -* - Z( 4, 8 ) = D( ISP1, ISP1 ) - Z( 6, 8 ) = -E( JS, JSP1 ) - Z( 8, 8 ) = -E( JSP1, JSP1 ) -* -* Set up right hand side(s) -* - K = 1 - II = MB*NB + 1 - DO 160 JJ = 0, NB - 1 - CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 ) - CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 ) - K = K + MB - II = II + MB - 160 CONTINUE -* -* -* Solve Z' * x = RHS -* - CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) - IF( IERR.GT.0 ) - $ INFO = IERR -* - CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) - IF( SCALOC.NE.ONE ) THEN - DO 170 K = 1, N - CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) - CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) - 170 CONTINUE - SCALE = SCALE*SCALOC - END IF -* -* Unpack solution vector(s) -* - K = 1 - II = MB*NB + 1 - DO 180 JJ = 0, NB - 1 - CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 ) - CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 ) - K = K + MB - II = II + MB - 180 CONTINUE -* -* Substitute R(I, J) and L(I, J) into remaining -* equation. -* - IF( J.GT.P+2 ) THEN - CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, - $ C( IS, JS ), LDC, B( 1, JS ), LDB, ONE, - $ F( IS, 1 ), LDF ) - CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, - $ F( IS, JS ), LDF, E( 1, JS ), LDE, ONE, - $ F( IS, 1 ), LDF ) - END IF - IF( I.LT.P ) THEN - CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE, - $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC, - $ ONE, C( IE+1, JS ), LDC ) - CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE, - $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF, - $ ONE, C( IE+1, JS ), LDC ) - END IF -* - END IF -* - 190 CONTINUE - 200 CONTINUE -* - END IF - RETURN -* -* End of DTGSY2 -* - END |