summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dtgex2.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dtgex2.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dtgex2.f')
-rw-r--r--src/lib/lapack/dtgex2.f581
1 files changed, 0 insertions, 581 deletions
diff --git a/src/lib/lapack/dtgex2.f b/src/lib/lapack/dtgex2.f
deleted file mode 100644
index 8351b7fd..00000000
--- a/src/lib/lapack/dtgex2.f
+++ /dev/null
@@ -1,581 +0,0 @@
- SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
- $ LDZ, J1, N1, N2, WORK, LWORK, INFO )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- LOGICAL WANTQ, WANTZ
- INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ WORK( * ), Z( LDZ, * )
-* ..
-*
-* Purpose
-* =======
-*
-* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
-* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
-* (A, B) by an orthogonal equivalence transformation.
-*
-* (A, B) must be in generalized real Schur canonical form (as returned
-* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
-* diagonal blocks. B is upper triangular.
-*
-* Optionally, the matrices Q and Z of generalized Schur vectors are
-* updated.
-*
-* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
-* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
-*
-*
-* Arguments
-* =========
-*
-* WANTQ (input) LOGICAL
-* .TRUE. : update the left transformation matrix Q;
-* .FALSE.: do not update Q.
-*
-* WANTZ (input) LOGICAL
-* .TRUE. : update the right transformation matrix Z;
-* .FALSE.: do not update Z.
-*
-* N (input) INTEGER
-* The order of the matrices A and B. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
-* On entry, the matrix A in the pair (A, B).
-* On exit, the updated matrix A.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
-* On entry, the matrix B in the pair (A, B).
-* On exit, the updated matrix B.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
-* On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
-* On exit, the updated matrix Q.
-* Not referenced if WANTQ = .FALSE..
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q. LDQ >= 1.
-* If WANTQ = .TRUE., LDQ >= N.
-*
-* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
-* On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
-* On exit, the updated matrix Z.
-* Not referenced if WANTZ = .FALSE..
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1.
-* If WANTZ = .TRUE., LDZ >= N.
-*
-* J1 (input) INTEGER
-* The index to the first block (A11, B11). 1 <= J1 <= N.
-*
-* N1 (input) INTEGER
-* The order of the first block (A11, B11). N1 = 0, 1 or 2.
-*
-* N2 (input) INTEGER
-* The order of the second block (A22, B22). N2 = 0, 1 or 2.
-*
-* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
-*
-* INFO (output) INTEGER
-* =0: Successful exit
-* >0: If INFO = 1, the transformed matrix (A, B) would be
-* too far from generalized Schur form; the blocks are
-* not swapped and (A, B) and (Q, Z) are unchanged.
-* The problem of swapping is too ill-conditioned.
-* <0: If INFO = -16: LWORK is too small. Appropriate value
-* for LWORK is returned in WORK(1).
-*
-* Further Details
-* ===============
-*
-* Based on contributions by
-* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
-* Umea University, S-901 87 Umea, Sweden.
-*
-* In the current code both weak and strong stability tests are
-* performed. The user can omit the strong stability test by changing
-* the internal logical parameter WANDS to .FALSE.. See ref. [2] for
-* details.
-*
-* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
-* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
-* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
-* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
-*
-* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
-* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
-* Estimation: Theory, Algorithms and Software,
-* Report UMINF - 94.04, Department of Computing Science, Umea
-* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
-* Note 87. To appear in Numerical Algorithms, 1996.
-*
-* =====================================================================
-* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
-* loops. Sven Hammarling, 1/5/02.
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION TEN
- PARAMETER ( TEN = 1.0D+01 )
- INTEGER LDST
- PARAMETER ( LDST = 4 )
- LOGICAL WANDS
- PARAMETER ( WANDS = .TRUE. )
-* ..
-* .. Local Scalars ..
- LOGICAL DTRONG, WEAK
- INTEGER I, IDUM, LINFO, M
- DOUBLE PRECISION BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
- $ F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
-* ..
-* .. Local Arrays ..
- INTEGER IWORK( LDST )
- DOUBLE PRECISION AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
- $ IRCOP( LDST, LDST ), LI( LDST, LDST ),
- $ LICOP( LDST, LDST ), S( LDST, LDST ),
- $ SCPY( LDST, LDST ), T( LDST, LDST ),
- $ TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
-* ..
-* .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
- $ DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
- $ DROT, DSCAL, DTGSY2
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
-* ..
-* .. Executable Statements ..
-*
- INFO = 0
-*
-* Quick return if possible
-*
- IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
- $ RETURN
- IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
- $ RETURN
- M = N1 + N2
- IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
- INFO = -16
- WORK( 1 ) = MAX( 1, N*M, M*M*2 )
- RETURN
- END IF
-*
- WEAK = .FALSE.
- DTRONG = .FALSE.
-*
-* Make a local copy of selected block
-*
- CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
- CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
- CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
- CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
-*
-* Compute threshold for testing acceptance of swapping.
-*
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- DSCALE = ZERO
- DSUM = ONE
- CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
- CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
- CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
- CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
- DNORM = DSCALE*SQRT( DSUM )
- THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
-*
- IF( M.EQ.2 ) THEN
-*
-* CASE 1: Swap 1-by-1 and 1-by-1 blocks.
-*
-* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
-* using Givens rotations and perform the swap tentatively.
-*
- F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
- G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
- SB = ABS( T( 2, 2 ) )
- SA = ABS( S( 2, 2 ) )
- CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
- IR( 2, 1 ) = -IR( 1, 2 )
- IR( 2, 2 ) = IR( 1, 1 )
- CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
- $ IR( 2, 1 ) )
- CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
- $ IR( 2, 1 ) )
- IF( SA.GE.SB ) THEN
- CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
- $ DDUM )
- ELSE
- CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
- $ DDUM )
- END IF
- CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
- $ LI( 2, 1 ) )
- CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
- $ LI( 2, 1 ) )
- LI( 2, 2 ) = LI( 1, 1 )
- LI( 1, 2 ) = -LI( 2, 1 )
-*
-* Weak stability test:
-* |S21| + |T21| <= O(EPS * F-norm((S, T)))
-*
- WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
- WEAK = WS.LE.THRESH
- IF( .NOT.WEAK )
- $ GO TO 70
-*
- IF( WANDS ) THEN
-*
-* Strong stability test:
-* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B)))
-*
- CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
- $ M )
- CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
- $ WORK( M*M+1 ), M )
- DSCALE = ZERO
- DSUM = ONE
- CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
-*
- CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
- $ M )
- CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
- $ WORK( M*M+1 ), M )
- CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
- SS = DSCALE*SQRT( DSUM )
- DTRONG = SS.LE.THRESH
- IF( .NOT.DTRONG )
- $ GO TO 70
- END IF
-*
-* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
-* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
-*
- CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
- $ IR( 2, 1 ) )
- CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
- $ IR( 2, 1 ) )
- CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
- $ LI( 1, 1 ), LI( 2, 1 ) )
- CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
- $ LI( 1, 1 ), LI( 2, 1 ) )
-*
-* Set N1-by-N2 (2,1) - blocks to ZERO.
-*
- A( J1+1, J1 ) = ZERO
- B( J1+1, J1 ) = ZERO
-*
-* Accumulate transformations into Q and Z if requested.
-*
- IF( WANTZ )
- $ CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
- $ IR( 2, 1 ) )
- IF( WANTQ )
- $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
- $ LI( 2, 1 ) )
-*
-* Exit with INFO = 0 if swap was successfully performed.
-*
- RETURN
-*
- ELSE
-*
-* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
-* and 2-by-2 blocks.
-*
-* Solve the generalized Sylvester equation
-* S11 * R - L * S22 = SCALE * S12
-* T11 * R - L * T22 = SCALE * T12
-* for R and L. Solutions in LI and IR.
-*
- CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
- CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
- $ IR( N2+1, N1+1 ), LDST )
- CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
- $ IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
- $ LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
- $ LINFO )
-*
-* Compute orthogonal matrix QL:
-*
-* QL' * LI = [ TL ]
-* [ 0 ]
-* where
-* LI = [ -L ]
-* [ SCALE * identity(N2) ]
-*
- DO 10 I = 1, N2
- CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
- LI( N1+I, I ) = SCALE
- 10 CONTINUE
- CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
- CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
-*
-* Compute orthogonal matrix RQ:
-*
-* IR * RQ' = [ 0 TR],
-*
-* where IR = [ SCALE * identity(N1), R ]
-*
- DO 20 I = 1, N1
- IR( N2+I, I ) = SCALE
- 20 CONTINUE
- CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
- CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
-*
-* Perform the swapping tentatively:
-*
- CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
- $ LDST )
- CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
- $ LDST )
- CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
- CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
- CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
- CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
-*
-* Triangularize the B-part by an RQ factorization.
-* Apply transformation (from left) to A-part, giving S.
-*
- CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
- CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
- $ LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
- CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
- $ LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
-*
-* Compute F-norm(S21) in BRQA21. (T21 is 0.)
-*
- DSCALE = ZERO
- DSUM = ONE
- DO 30 I = 1, N2
- CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
- 30 CONTINUE
- BRQA21 = DSCALE*SQRT( DSUM )
-*
-* Triangularize the B-part by a QR factorization.
-* Apply transformation (from right) to A-part, giving S.
-*
- CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
- CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
- $ WORK, INFO )
- CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
- $ WORK, INFO )
- IF( LINFO.NE.0 )
- $ GO TO 70
-*
-* Compute F-norm(S21) in BQRA21. (T21 is 0.)
-*
- DSCALE = ZERO
- DSUM = ONE
- DO 40 I = 1, N2
- CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
- 40 CONTINUE
- BQRA21 = DSCALE*SQRT( DSUM )
-*
-* Decide which method to use.
-* Weak stability test:
-* F-norm(S21) <= O(EPS * F-norm((S, T)))
-*
- IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
- CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
- CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
- CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
- CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
- ELSE IF( BRQA21.GE.THRESH ) THEN
- GO TO 70
- END IF
-*
-* Set lower triangle of B-part to zero
-*
- CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
-*
- IF( WANDS ) THEN
-*
-* Strong stability test:
-* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B)))
-*
- CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
- $ M )
- CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
- $ WORK( M*M+1 ), M )
- DSCALE = ZERO
- DSUM = ONE
- CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
-*
- CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
- $ M )
- CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
- $ WORK, M )
- CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
- $ WORK( M*M+1 ), M )
- CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
- SS = DSCALE*SQRT( DSUM )
- DTRONG = ( SS.LE.THRESH )
- IF( .NOT.DTRONG )
- $ GO TO 70
-*
- END IF
-*
-* If the swap is accepted ("weakly" and "strongly"), apply the
-* transformations and set N1-by-N2 (2,1)-block to zero.
-*
- CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
-*
-* copy back M-by-M diagonal block starting at index J1 of (A, B)
-*
- CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
- CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
- CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
-*
-* Standardize existing 2-by-2 blocks.
-*
- DO 50 I = 1, M*M
- WORK(I) = ZERO
- 50 CONTINUE
- WORK( 1 ) = ONE
- T( 1, 1 ) = ONE
- IDUM = LWORK - M*M - 2
- IF( N2.GT.1 ) THEN
- CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
- $ WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
- WORK( M+1 ) = -WORK( 2 )
- WORK( M+2 ) = WORK( 1 )
- T( N2, N2 ) = T( 1, 1 )
- T( 1, 2 ) = -T( 2, 1 )
- END IF
- WORK( M*M ) = ONE
- T( M, M ) = ONE
-*
- IF( N1.GT.1 ) THEN
- CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
- $ TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
- $ WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
- $ T( M, M-1 ) )
- WORK( M*M ) = WORK( N2*M+N2+1 )
- WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
- T( M, M ) = T( N2+1, N2+1 )
- T( M-1, M ) = -T( M, M-1 )
- END IF
- CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
- $ LDA, ZERO, WORK( M*M+1 ), N2 )
- CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
- $ LDA )
- CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
- $ LDB, ZERO, WORK( M*M+1 ), N2 )
- CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
- $ LDB )
- CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
- $ WORK( M*M+1 ), M )
- CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
- CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
- $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
- CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
- CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
- $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
- CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
- CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
- $ WORK, M )
- CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
-*
-* Accumulate transformations into Q and Z if requested.
-*
- IF( WANTQ ) THEN
- CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
- $ LDST, ZERO, WORK, N )
- CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
-*
- END IF
-*
- IF( WANTZ ) THEN
- CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
- $ LDST, ZERO, WORK, N )
- CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
-*
- END IF
-*
-* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
-* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
-*
- I = J1 + M
- IF( I.LE.N ) THEN
- CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
- $ A( J1, I ), LDA, ZERO, WORK, M )
- CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
- CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
- $ B( J1, I ), LDA, ZERO, WORK, M )
- CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
- END IF
- I = J1 - 1
- IF( I.GT.0 ) THEN
- CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
- $ LDST, ZERO, WORK, I )
- CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
- CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
- $ LDST, ZERO, WORK, I )
- CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
- END IF
-*
-* Exit with INFO = 0 if swap was successfully performed.
-*
- RETURN
-*
- END IF
-*
-* Exit with INFO = 1 if swap was rejected.
-*
- 70 CONTINUE
-*
- INFO = 1
- RETURN
-*
-* End of DTGEX2
-*
- END