diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dtgex2.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dtgex2.f')
-rw-r--r-- | src/lib/lapack/dtgex2.f | 581 |
1 files changed, 0 insertions, 581 deletions
diff --git a/src/lib/lapack/dtgex2.f b/src/lib/lapack/dtgex2.f deleted file mode 100644 index 8351b7fd..00000000 --- a/src/lib/lapack/dtgex2.f +++ /dev/null @@ -1,581 +0,0 @@ - SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, - $ LDZ, J1, N1, N2, WORK, LWORK, INFO ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - LOGICAL WANTQ, WANTZ - INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), - $ WORK( * ), Z( LDZ, * ) -* .. -* -* Purpose -* ======= -* -* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) -* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair -* (A, B) by an orthogonal equivalence transformation. -* -* (A, B) must be in generalized real Schur canonical form (as returned -* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 -* diagonal blocks. B is upper triangular. -* -* Optionally, the matrices Q and Z of generalized Schur vectors are -* updated. -* -* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' -* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' -* -* -* Arguments -* ========= -* -* WANTQ (input) LOGICAL -* .TRUE. : update the left transformation matrix Q; -* .FALSE.: do not update Q. -* -* WANTZ (input) LOGICAL -* .TRUE. : update the right transformation matrix Z; -* .FALSE.: do not update Z. -* -* N (input) INTEGER -* The order of the matrices A and B. N >= 0. -* -* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N) -* On entry, the matrix A in the pair (A, B). -* On exit, the updated matrix A. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N) -* On entry, the matrix B in the pair (A, B). -* On exit, the updated matrix B. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,N). -* -* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) -* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. -* On exit, the updated matrix Q. -* Not referenced if WANTQ = .FALSE.. -* -* LDQ (input) INTEGER -* The leading dimension of the array Q. LDQ >= 1. -* If WANTQ = .TRUE., LDQ >= N. -* -* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) -* On entry, if WANTZ =.TRUE., the orthogonal matrix Z. -* On exit, the updated matrix Z. -* Not referenced if WANTZ = .FALSE.. -* -* LDZ (input) INTEGER -* The leading dimension of the array Z. LDZ >= 1. -* If WANTZ = .TRUE., LDZ >= N. -* -* J1 (input) INTEGER -* The index to the first block (A11, B11). 1 <= J1 <= N. -* -* N1 (input) INTEGER -* The order of the first block (A11, B11). N1 = 0, 1 or 2. -* -* N2 (input) INTEGER -* The order of the second block (A22, B22). N2 = 0, 1 or 2. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)). -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) -* -* INFO (output) INTEGER -* =0: Successful exit -* >0: If INFO = 1, the transformed matrix (A, B) would be -* too far from generalized Schur form; the blocks are -* not swapped and (A, B) and (Q, Z) are unchanged. -* The problem of swapping is too ill-conditioned. -* <0: If INFO = -16: LWORK is too small. Appropriate value -* for LWORK is returned in WORK(1). -* -* Further Details -* =============== -* -* Based on contributions by -* Bo Kagstrom and Peter Poromaa, Department of Computing Science, -* Umea University, S-901 87 Umea, Sweden. -* -* In the current code both weak and strong stability tests are -* performed. The user can omit the strong stability test by changing -* the internal logical parameter WANDS to .FALSE.. See ref. [2] for -* details. -* -* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the -* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in -* M.S. Moonen et al (eds), Linear Algebra for Large Scale and -* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. -* -* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified -* Eigenvalues of a Regular Matrix Pair (A, B) and Condition -* Estimation: Theory, Algorithms and Software, -* Report UMINF - 94.04, Department of Computing Science, Umea -* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working -* Note 87. To appear in Numerical Algorithms, 1996. -* -* ===================================================================== -* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO -* loops. Sven Hammarling, 1/5/02. -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) - DOUBLE PRECISION TEN - PARAMETER ( TEN = 1.0D+01 ) - INTEGER LDST - PARAMETER ( LDST = 4 ) - LOGICAL WANDS - PARAMETER ( WANDS = .TRUE. ) -* .. -* .. Local Scalars .. - LOGICAL DTRONG, WEAK - INTEGER I, IDUM, LINFO, M - DOUBLE PRECISION BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS, - $ F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS -* .. -* .. Local Arrays .. - INTEGER IWORK( LDST ) - DOUBLE PRECISION AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ), - $ IRCOP( LDST, LDST ), LI( LDST, LDST ), - $ LICOP( LDST, LDST ), S( LDST, LDST ), - $ SCPY( LDST, LDST ), T( LDST, LDST ), - $ TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST ) -* .. -* .. External Functions .. - DOUBLE PRECISION DLAMCH - EXTERNAL DLAMCH -* .. -* .. External Subroutines .. - EXTERNAL DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG, - $ DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2, - $ DROT, DSCAL, DTGSY2 -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, SQRT -* .. -* .. Executable Statements .. -* - INFO = 0 -* -* Quick return if possible -* - IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 ) - $ RETURN - IF( N1.GT.N .OR. ( J1+N1 ).GT.N ) - $ RETURN - M = N1 + N2 - IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN - INFO = -16 - WORK( 1 ) = MAX( 1, N*M, M*M*2 ) - RETURN - END IF -* - WEAK = .FALSE. - DTRONG = .FALSE. -* -* Make a local copy of selected block -* - CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST ) - CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST ) - CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) - CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) -* -* Compute threshold for testing acceptance of swapping. -* - EPS = DLAMCH( 'P' ) - SMLNUM = DLAMCH( 'S' ) / EPS - DSCALE = ZERO - DSUM = ONE - CALL DLACPY( 'Full', M, M, S, LDST, WORK, M ) - CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM ) - CALL DLACPY( 'Full', M, M, T, LDST, WORK, M ) - CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM ) - DNORM = DSCALE*SQRT( DSUM ) - THRESH = MAX( TEN*EPS*DNORM, SMLNUM ) -* - IF( M.EQ.2 ) THEN -* -* CASE 1: Swap 1-by-1 and 1-by-1 blocks. -* -* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks -* using Givens rotations and perform the swap tentatively. -* - F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) - G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) - SB = ABS( T( 2, 2 ) ) - SA = ABS( S( 2, 2 ) ) - CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM ) - IR( 2, 1 ) = -IR( 1, 2 ) - IR( 2, 2 ) = IR( 1, 1 ) - CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ), - $ IR( 2, 1 ) ) - CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ), - $ IR( 2, 1 ) ) - IF( SA.GE.SB ) THEN - CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ), - $ DDUM ) - ELSE - CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ), - $ DDUM ) - END IF - CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ), - $ LI( 2, 1 ) ) - CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ), - $ LI( 2, 1 ) ) - LI( 2, 2 ) = LI( 1, 1 ) - LI( 1, 2 ) = -LI( 2, 1 ) -* -* Weak stability test: -* |S21| + |T21| <= O(EPS * F-norm((S, T))) -* - WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) ) - WEAK = WS.LE.THRESH - IF( .NOT.WEAK ) - $ GO TO 70 -* - IF( WANDS ) THEN -* -* Strong stability test: -* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) -* - CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ), - $ M ) - CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE, - $ WORK( M*M+1 ), M ) - DSCALE = ZERO - DSUM = ONE - CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) -* - CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ), - $ M ) - CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE, - $ WORK( M*M+1 ), M ) - CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) - SS = DSCALE*SQRT( DSUM ) - DTRONG = SS.LE.THRESH - IF( .NOT.DTRONG ) - $ GO TO 70 - END IF -* -* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and -* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). -* - CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ), - $ IR( 2, 1 ) ) - CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ), - $ IR( 2, 1 ) ) - CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, - $ LI( 1, 1 ), LI( 2, 1 ) ) - CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, - $ LI( 1, 1 ), LI( 2, 1 ) ) -* -* Set N1-by-N2 (2,1) - blocks to ZERO. -* - A( J1+1, J1 ) = ZERO - B( J1+1, J1 ) = ZERO -* -* Accumulate transformations into Q and Z if requested. -* - IF( WANTZ ) - $ CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ), - $ IR( 2, 1 ) ) - IF( WANTQ ) - $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ), - $ LI( 2, 1 ) ) -* -* Exit with INFO = 0 if swap was successfully performed. -* - RETURN -* - ELSE -* -* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 -* and 2-by-2 blocks. -* -* Solve the generalized Sylvester equation -* S11 * R - L * S22 = SCALE * S12 -* T11 * R - L * T22 = SCALE * T12 -* for R and L. Solutions in LI and IR. -* - CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST ) - CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST, - $ IR( N2+1, N1+1 ), LDST ) - CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST, - $ IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ), - $ LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM, - $ LINFO ) -* -* Compute orthogonal matrix QL: -* -* QL' * LI = [ TL ] -* [ 0 ] -* where -* LI = [ -L ] -* [ SCALE * identity(N2) ] -* - DO 10 I = 1, N2 - CALL DSCAL( N1, -ONE, LI( 1, I ), 1 ) - LI( N1+I, I ) = SCALE - 10 CONTINUE - CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 - CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 -* -* Compute orthogonal matrix RQ: -* -* IR * RQ' = [ 0 TR], -* -* where IR = [ SCALE * identity(N1), R ] -* - DO 20 I = 1, N1 - IR( N2+I, I ) = SCALE - 20 CONTINUE - CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 - CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 -* -* Perform the swapping tentatively: -* - CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S, - $ LDST ) - CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T, - $ LDST ) - CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST ) - CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST ) - CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST ) - CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST ) -* -* Triangularize the B-part by an RQ factorization. -* Apply transformation (from left) to A-part, giving S. -* - CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 - CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK, - $ LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 - CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK, - $ LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 -* -* Compute F-norm(S21) in BRQA21. (T21 is 0.) -* - DSCALE = ZERO - DSUM = ONE - DO 30 I = 1, N2 - CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM ) - 30 CONTINUE - BRQA21 = DSCALE*SQRT( DSUM ) -* -* Triangularize the B-part by a QR factorization. -* Apply transformation (from right) to A-part, giving S. -* - CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 - CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST, - $ WORK, INFO ) - CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST, - $ WORK, INFO ) - IF( LINFO.NE.0 ) - $ GO TO 70 -* -* Compute F-norm(S21) in BQRA21. (T21 is 0.) -* - DSCALE = ZERO - DSUM = ONE - DO 40 I = 1, N2 - CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM ) - 40 CONTINUE - BQRA21 = DSCALE*SQRT( DSUM ) -* -* Decide which method to use. -* Weak stability test: -* F-norm(S21) <= O(EPS * F-norm((S, T))) -* - IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN - CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST ) - CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST ) - CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST ) - CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST ) - ELSE IF( BRQA21.GE.THRESH ) THEN - GO TO 70 - END IF -* -* Set lower triangle of B-part to zero -* - CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST ) -* - IF( WANDS ) THEN -* -* Strong stability test: -* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) -* - CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ), - $ M ) - CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE, - $ WORK( M*M+1 ), M ) - DSCALE = ZERO - DSUM = ONE - CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) -* - CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ), - $ M ) - CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO, - $ WORK, M ) - CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE, - $ WORK( M*M+1 ), M ) - CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM ) - SS = DSCALE*SQRT( DSUM ) - DTRONG = ( SS.LE.THRESH ) - IF( .NOT.DTRONG ) - $ GO TO 70 -* - END IF -* -* If the swap is accepted ("weakly" and "strongly"), apply the -* transformations and set N1-by-N2 (2,1)-block to zero. -* - CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST ) -* -* copy back M-by-M diagonal block starting at index J1 of (A, B) -* - CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA ) - CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB ) - CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST ) -* -* Standardize existing 2-by-2 blocks. -* - DO 50 I = 1, M*M - WORK(I) = ZERO - 50 CONTINUE - WORK( 1 ) = ONE - T( 1, 1 ) = ONE - IDUM = LWORK - M*M - 2 - IF( N2.GT.1 ) THEN - CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE, - $ WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) ) - WORK( M+1 ) = -WORK( 2 ) - WORK( M+2 ) = WORK( 1 ) - T( N2, N2 ) = T( 1, 1 ) - T( 1, 2 ) = -T( 2, 1 ) - END IF - WORK( M*M ) = ONE - T( M, M ) = ONE -* - IF( N1.GT.1 ) THEN - CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB, - $ TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ), - $ WORK( N2*M+N2+2 ), T( N2+1, N2+1 ), - $ T( M, M-1 ) ) - WORK( M*M ) = WORK( N2*M+N2+1 ) - WORK( M*M-1 ) = -WORK( N2*M+N2+2 ) - T( M, M ) = T( N2+1, N2+1 ) - T( M-1, M ) = -T( M, M-1 ) - END IF - CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ), - $ LDA, ZERO, WORK( M*M+1 ), N2 ) - CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ), - $ LDA ) - CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ), - $ LDB, ZERO, WORK( M*M+1 ), N2 ) - CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ), - $ LDB ) - CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO, - $ WORK( M*M+1 ), M ) - CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST ) - CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA, - $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 ) - CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA ) - CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB, - $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 ) - CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB ) - CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO, - $ WORK, M ) - CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST ) -* -* Accumulate transformations into Q and Z if requested. -* - IF( WANTQ ) THEN - CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI, - $ LDST, ZERO, WORK, N ) - CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ ) -* - END IF -* - IF( WANTZ ) THEN - CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR, - $ LDST, ZERO, WORK, N ) - CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ ) -* - END IF -* -* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and -* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). -* - I = J1 + M - IF( I.LE.N ) THEN - CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST, - $ A( J1, I ), LDA, ZERO, WORK, M ) - CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA ) - CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST, - $ B( J1, I ), LDA, ZERO, WORK, M ) - CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB ) - END IF - I = J1 - 1 - IF( I.GT.0 ) THEN - CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR, - $ LDST, ZERO, WORK, I ) - CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA ) - CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR, - $ LDST, ZERO, WORK, I ) - CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB ) - END IF -* -* Exit with INFO = 0 if swap was successfully performed. -* - RETURN -* - END IF -* -* Exit with INFO = 1 if swap was rejected. -* - 70 CONTINUE -* - INFO = 1 - RETURN -* -* End of DTGEX2 -* - END |