summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dsytrd.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dsytrd.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dsytrd.f')
-rw-r--r--src/lib/lapack/dsytrd.f294
1 files changed, 0 insertions, 294 deletions
diff --git a/src/lib/lapack/dsytrd.f b/src/lib/lapack/dsytrd.f
deleted file mode 100644
index 569ee35b..00000000
--- a/src/lib/lapack/dsytrd.f
+++ /dev/null
@@ -1,294 +0,0 @@
- SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ),
- $ WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DSYTRD reduces a real symmetric matrix A to real symmetric
-* tridiagonal form T by an orthogonal similarity transformation:
-* Q**T * A * Q = T.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangle of A is stored;
-* = 'L': Lower triangle of A is stored.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the symmetric matrix A. If UPLO = 'U', the leading
-* N-by-N upper triangular part of A contains the upper
-* triangular part of the matrix A, and the strictly lower
-* triangular part of A is not referenced. If UPLO = 'L', the
-* leading N-by-N lower triangular part of A contains the lower
-* triangular part of the matrix A, and the strictly upper
-* triangular part of A is not referenced.
-* On exit, if UPLO = 'U', the diagonal and first superdiagonal
-* of A are overwritten by the corresponding elements of the
-* tridiagonal matrix T, and the elements above the first
-* superdiagonal, with the array TAU, represent the orthogonal
-* matrix Q as a product of elementary reflectors; if UPLO
-* = 'L', the diagonal and first subdiagonal of A are over-
-* written by the corresponding elements of the tridiagonal
-* matrix T, and the elements below the first subdiagonal, with
-* the array TAU, represent the orthogonal matrix Q as a product
-* of elementary reflectors. See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* D (output) DOUBLE PRECISION array, dimension (N)
-* The diagonal elements of the tridiagonal matrix T:
-* D(i) = A(i,i).
-*
-* E (output) DOUBLE PRECISION array, dimension (N-1)
-* The off-diagonal elements of the tridiagonal matrix T:
-* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-*
-* TAU (output) DOUBLE PRECISION array, dimension (N-1)
-* The scalar factors of the elementary reflectors (see Further
-* Details).
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= 1.
-* For optimum performance LWORK >= N*NB, where NB is the
-* optimal blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* Further Details
-* ===============
-*
-* If UPLO = 'U', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(n-1) . . . H(2) H(1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
-* A(1:i-1,i+1), and tau in TAU(i).
-*
-* If UPLO = 'L', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(1) H(2) . . . H(n-1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
-* and tau in TAU(i).
-*
-* The contents of A on exit are illustrated by the following examples
-* with n = 5:
-*
-* if UPLO = 'U': if UPLO = 'L':
-*
-* ( d e v2 v3 v4 ) ( d )
-* ( d e v3 v4 ) ( e d )
-* ( d e v4 ) ( v1 e d )
-* ( d e ) ( v1 v2 e d )
-* ( d ) ( v1 v2 v3 e d )
-*
-* where d and e denote diagonal and off-diagonal elements of T, and vi
-* denotes an element of the vector defining H(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
- $ NBMIN, NX
-* ..
-* .. External Subroutines ..
- EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters
-*
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -9
- END IF
-*
- IF( INFO.EQ.0 ) THEN
-*
-* Determine the block size.
-*
- NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYTRD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
-*
- NX = N
- IWS = 1
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
-*
-* Determine when to cross over from blocked to unblocked code
-* (last block is always handled by unblocked code).
-*
- NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
- IF( NX.LT.N ) THEN
-*
-* Determine if workspace is large enough for blocked code.
-*
- LDWORK = N
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
-*
-* Not enough workspace to use optimal NB: determine the
-* minimum value of NB, and reduce NB or force use of
-* unblocked code by setting NX = N.
-*
- NB = MAX( LWORK / LDWORK, 1 )
- NBMIN = ILAENV( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
- IF( NB.LT.NBMIN )
- $ NX = N
- END IF
- ELSE
- NX = N
- END IF
- ELSE
- NB = 1
- END IF
-*
- IF( UPPER ) THEN
-*
-* Reduce the upper triangle of A.
-* Columns 1:kk are handled by the unblocked method.
-*
- KK = N - ( ( N-NX+NB-1 ) / NB )*NB
- DO 20 I = N - NB + 1, KK + 1, -NB
-*
-* Reduce columns i:i+nb-1 to tridiagonal form and form the
-* matrix W which is needed to update the unreduced part of
-* the matrix
-*
- CALL DLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
- $ LDWORK )
-*
-* Update the unreduced submatrix A(1:i-1,1:i-1), using an
-* update of the form: A := A - V*W' - W*V'
-*
- CALL DSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
- $ LDA, WORK, LDWORK, ONE, A, LDA )
-*
-* Copy superdiagonal elements back into A, and diagonal
-* elements into D
-*
- DO 10 J = I, I + NB - 1
- A( J-1, J ) = E( J-1 )
- D( J ) = A( J, J )
- 10 CONTINUE
- 20 CONTINUE
-*
-* Use unblocked code to reduce the last or only block
-*
- CALL DSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
- ELSE
-*
-* Reduce the lower triangle of A
-*
- DO 40 I = 1, N - NX, NB
-*
-* Reduce columns i:i+nb-1 to tridiagonal form and form the
-* matrix W which is needed to update the unreduced part of
-* the matrix
-*
- CALL DLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
- $ TAU( I ), WORK, LDWORK )
-*
-* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
-* an update of the form: A := A - V*W' - W*V'
-*
- CALL DSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
- $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
- $ A( I+NB, I+NB ), LDA )
-*
-* Copy subdiagonal elements back into A, and diagonal
-* elements into D
-*
- DO 30 J = I, I + NB - 1
- A( J+1, J ) = E( J )
- D( J ) = A( J, J )
- 30 CONTINUE
- 40 CONTINUE
-*
-* Use unblocked code to reduce the last or only block
-*
- CALL DSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
- $ TAU( I ), IINFO )
- END IF
-*
- WORK( 1 ) = LWKOPT
- RETURN
-*
-* End of DSYTRD
-*
- END