summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dsytd2.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dsytd2.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dsytd2.f')
-rw-r--r--src/lib/lapack/dsytd2.f248
1 files changed, 0 insertions, 248 deletions
diff --git a/src/lib/lapack/dsytd2.f b/src/lib/lapack/dsytd2.f
deleted file mode 100644
index c696818e..00000000
--- a/src/lib/lapack/dsytd2.f
+++ /dev/null
@@ -1,248 +0,0 @@
- SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
-* form T by an orthogonal similarity transformation: Q' * A * Q = T.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* Specifies whether the upper or lower triangular part of the
-* symmetric matrix A is stored:
-* = 'U': Upper triangular
-* = 'L': Lower triangular
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the symmetric matrix A. If UPLO = 'U', the leading
-* n-by-n upper triangular part of A contains the upper
-* triangular part of the matrix A, and the strictly lower
-* triangular part of A is not referenced. If UPLO = 'L', the
-* leading n-by-n lower triangular part of A contains the lower
-* triangular part of the matrix A, and the strictly upper
-* triangular part of A is not referenced.
-* On exit, if UPLO = 'U', the diagonal and first superdiagonal
-* of A are overwritten by the corresponding elements of the
-* tridiagonal matrix T, and the elements above the first
-* superdiagonal, with the array TAU, represent the orthogonal
-* matrix Q as a product of elementary reflectors; if UPLO
-* = 'L', the diagonal and first subdiagonal of A are over-
-* written by the corresponding elements of the tridiagonal
-* matrix T, and the elements below the first subdiagonal, with
-* the array TAU, represent the orthogonal matrix Q as a product
-* of elementary reflectors. See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* D (output) DOUBLE PRECISION array, dimension (N)
-* The diagonal elements of the tridiagonal matrix T:
-* D(i) = A(i,i).
-*
-* E (output) DOUBLE PRECISION array, dimension (N-1)
-* The off-diagonal elements of the tridiagonal matrix T:
-* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
-*
-* TAU (output) DOUBLE PRECISION array, dimension (N-1)
-* The scalar factors of the elementary reflectors (see Further
-* Details).
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-*
-* Further Details
-* ===============
-*
-* If UPLO = 'U', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(n-1) . . . H(2) H(1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
-* A(1:i-1,i+1), and tau in TAU(i).
-*
-* If UPLO = 'L', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(1) H(2) . . . H(n-1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v'
-*
-* where tau is a real scalar, and v is a real vector with
-* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
-* and tau in TAU(i).
-*
-* The contents of A on exit are illustrated by the following examples
-* with n = 5:
-*
-* if UPLO = 'U': if UPLO = 'L':
-*
-* ( d e v2 v3 v4 ) ( d )
-* ( d e v3 v4 ) ( e d )
-* ( d e v4 ) ( v1 e d )
-* ( d e ) ( v1 v2 e d )
-* ( d ) ( v1 v2 v3 e d )
-*
-* where d and e denote diagonal and off-diagonal elements of T, and vi
-* denotes an element of the vector defining H(i).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE, ZERO, HALF
- PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0,
- $ HALF = 1.0D0 / 2.0D0 )
-* ..
-* .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I
- DOUBLE PRECISION ALPHA, TAUI
-* ..
-* .. External Subroutines ..
- EXTERNAL DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DDOT
- EXTERNAL LSAME, DDOT
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters
-*
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYTD2', -INFO )
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.LE.0 )
- $ RETURN
-*
- IF( UPPER ) THEN
-*
-* Reduce the upper triangle of A
-*
- DO 10 I = N - 1, 1, -1
-*
-* Generate elementary reflector H(i) = I - tau * v * v'
-* to annihilate A(1:i-1,i+1)
-*
- CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
- E( I ) = A( I, I+1 )
-*
- IF( TAUI.NE.ZERO ) THEN
-*
-* Apply H(i) from both sides to A(1:i,1:i)
-*
- A( I, I+1 ) = ONE
-*
-* Compute x := tau * A * v storing x in TAU(1:i)
-*
- CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
- $ TAU, 1 )
-*
-* Compute w := x - 1/2 * tau * (x'*v) * v
-*
- ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
- CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
-*
-* Apply the transformation as a rank-2 update:
-* A := A - v * w' - w * v'
-*
- CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
- $ LDA )
-*
- A( I, I+1 ) = E( I )
- END IF
- D( I+1 ) = A( I+1, I+1 )
- TAU( I ) = TAUI
- 10 CONTINUE
- D( 1 ) = A( 1, 1 )
- ELSE
-*
-* Reduce the lower triangle of A
-*
- DO 20 I = 1, N - 1
-*
-* Generate elementary reflector H(i) = I - tau * v * v'
-* to annihilate A(i+2:n,i)
-*
- CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
- $ TAUI )
- E( I ) = A( I+1, I )
-*
- IF( TAUI.NE.ZERO ) THEN
-*
-* Apply H(i) from both sides to A(i+1:n,i+1:n)
-*
- A( I+1, I ) = ONE
-*
-* Compute x := tau * A * v storing y in TAU(i:n-1)
-*
- CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
- $ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
-*
-* Compute w := x - 1/2 * tau * (x'*v) * v
-*
- ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
- $ 1 )
- CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
-*
-* Apply the transformation as a rank-2 update:
-* A := A - v * w' - w * v'
-*
- CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
- $ A( I+1, I+1 ), LDA )
-*
- A( I+1, I ) = E( I )
- END IF
- D( I ) = A( I, I )
- TAU( I ) = TAUI
- 20 CONTINUE
- D( N ) = A( N, N )
- END IF
-*
- RETURN
-*
-* End of DSYTD2
-*
- END