diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dormqr.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dormqr.f')
-rw-r--r-- | src/lib/lapack/dormqr.f | 260 |
1 files changed, 0 insertions, 260 deletions
diff --git a/src/lib/lapack/dormqr.f b/src/lib/lapack/dormqr.f deleted file mode 100644 index ee372695..00000000 --- a/src/lib/lapack/dormqr.f +++ /dev/null @@ -1,260 +0,0 @@ - SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, - $ WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, K, LDA, LDC, LWORK, M, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DORMQR overwrites the general real M-by-N matrix C with -* -* SIDE = 'L' SIDE = 'R' -* TRANS = 'N': Q * C C * Q -* TRANS = 'T': Q**T * C C * Q**T -* -* where Q is a real orthogonal matrix defined as the product of k -* elementary reflectors -* -* Q = H(1) H(2) . . . H(k) -* -* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N -* if SIDE = 'R'. -* -* Arguments -* ========= -* -* SIDE (input) CHARACTER*1 -* = 'L': apply Q or Q**T from the Left; -* = 'R': apply Q or Q**T from the Right. -* -* TRANS (input) CHARACTER*1 -* = 'N': No transpose, apply Q; -* = 'T': Transpose, apply Q**T. -* -* M (input) INTEGER -* The number of rows of the matrix C. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix C. N >= 0. -* -* K (input) INTEGER -* The number of elementary reflectors whose product defines -* the matrix Q. -* If SIDE = 'L', M >= K >= 0; -* if SIDE = 'R', N >= K >= 0. -* -* A (input) DOUBLE PRECISION array, dimension (LDA,K) -* The i-th column must contain the vector which defines the -* elementary reflector H(i), for i = 1,2,...,k, as returned by -* DGEQRF in the first k columns of its array argument A. -* A is modified by the routine but restored on exit. -* -* LDA (input) INTEGER -* The leading dimension of the array A. -* If SIDE = 'L', LDA >= max(1,M); -* if SIDE = 'R', LDA >= max(1,N). -* -* TAU (input) DOUBLE PRECISION array, dimension (K) -* TAU(i) must contain the scalar factor of the elementary -* reflector H(i), as returned by DGEQRF. -* -* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) -* On entry, the M-by-N matrix C. -* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. -* -* LDC (input) INTEGER -* The leading dimension of the array C. LDC >= max(1,M). -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* If SIDE = 'L', LWORK >= max(1,N); -* if SIDE = 'R', LWORK >= max(1,M). -* For optimum performance LWORK >= N*NB if SIDE = 'L', and -* LWORK >= M*NB if SIDE = 'R', where NB is the optimal -* blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NBMAX, LDT - PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) -* .. -* .. Local Scalars .. - LOGICAL LEFT, LQUERY, NOTRAN - INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK, - $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW -* .. -* .. Local Arrays .. - DOUBLE PRECISION T( LDT, NBMAX ) -* .. -* .. External Functions .. - LOGICAL LSAME - INTEGER ILAENV - EXTERNAL LSAME, ILAENV -* .. -* .. External Subroutines .. - EXTERNAL DLARFB, DLARFT, DORM2R, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input arguments -* - INFO = 0 - LEFT = LSAME( SIDE, 'L' ) - NOTRAN = LSAME( TRANS, 'N' ) - LQUERY = ( LWORK.EQ.-1 ) -* -* NQ is the order of Q and NW is the minimum dimension of WORK -* - IF( LEFT ) THEN - NQ = M - NW = N - ELSE - NQ = N - NW = M - END IF - IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN - INFO = -2 - ELSE IF( M.LT.0 ) THEN - INFO = -3 - ELSE IF( N.LT.0 ) THEN - INFO = -4 - ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN - INFO = -5 - ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN - INFO = -7 - ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -10 - ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN - INFO = -12 - END IF -* - IF( INFO.EQ.0 ) THEN -* -* Determine the block size. NB may be at most NBMAX, where NBMAX -* is used to define the local array T. -* - NB = MIN( NBMAX, ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N, K, - $ -1 ) ) - LWKOPT = MAX( 1, NW )*NB - WORK( 1 ) = LWKOPT - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DORMQR', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN - WORK( 1 ) = 1 - RETURN - END IF -* - NBMIN = 2 - LDWORK = NW - IF( NB.GT.1 .AND. NB.LT.K ) THEN - IWS = NW*NB - IF( LWORK.LT.IWS ) THEN - NB = LWORK / LDWORK - NBMIN = MAX( 2, ILAENV( 2, 'DORMQR', SIDE // TRANS, M, N, K, - $ -1 ) ) - END IF - ELSE - IWS = NW - END IF -* - IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN -* -* Use unblocked code -* - CALL DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, - $ IINFO ) - ELSE -* -* Use blocked code -* - IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. - $ ( .NOT.LEFT .AND. NOTRAN ) ) THEN - I1 = 1 - I2 = K - I3 = NB - ELSE - I1 = ( ( K-1 ) / NB )*NB + 1 - I2 = 1 - I3 = -NB - END IF -* - IF( LEFT ) THEN - NI = N - JC = 1 - ELSE - MI = M - IC = 1 - END IF -* - DO 10 I = I1, I2, I3 - IB = MIN( NB, K-I+1 ) -* -* Form the triangular factor of the block reflector -* H = H(i) H(i+1) . . . H(i+ib-1) -* - CALL DLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ), - $ LDA, TAU( I ), T, LDT ) - IF( LEFT ) THEN -* -* H or H' is applied to C(i:m,1:n) -* - MI = M - I + 1 - IC = I - ELSE -* -* H or H' is applied to C(1:m,i:n) -* - NI = N - I + 1 - JC = I - END IF -* -* Apply H or H' -* - CALL DLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI, - $ IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, - $ WORK, LDWORK ) - 10 CONTINUE - END IF - WORK( 1 ) = LWKOPT - RETURN -* -* End of DORMQR -* - END |