summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dormlq.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dormlq.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dormlq.f')
-rw-r--r--src/lib/lapack/dormlq.f267
1 files changed, 0 insertions, 267 deletions
diff --git a/src/lib/lapack/dormlq.f b/src/lib/lapack/dormlq.f
deleted file mode 100644
index f0c68ef2..00000000
--- a/src/lib/lapack/dormlq.f
+++ /dev/null
@@ -1,267 +0,0 @@
- SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DORMLQ overwrites the general real M-by-N matrix C with
-*
-* SIDE = 'L' SIDE = 'R'
-* TRANS = 'N': Q * C C * Q
-* TRANS = 'T': Q**T * C C * Q**T
-*
-* where Q is a real orthogonal matrix defined as the product of k
-* elementary reflectors
-*
-* Q = H(k) . . . H(2) H(1)
-*
-* as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
-* if SIDE = 'R'.
-*
-* Arguments
-* =========
-*
-* SIDE (input) CHARACTER*1
-* = 'L': apply Q or Q**T from the Left;
-* = 'R': apply Q or Q**T from the Right.
-*
-* TRANS (input) CHARACTER*1
-* = 'N': No transpose, apply Q;
-* = 'T': Transpose, apply Q**T.
-*
-* M (input) INTEGER
-* The number of rows of the matrix C. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix C. N >= 0.
-*
-* K (input) INTEGER
-* The number of elementary reflectors whose product defines
-* the matrix Q.
-* If SIDE = 'L', M >= K >= 0;
-* if SIDE = 'R', N >= K >= 0.
-*
-* A (input) DOUBLE PRECISION array, dimension
-* (LDA,M) if SIDE = 'L',
-* (LDA,N) if SIDE = 'R'
-* The i-th row must contain the vector which defines the
-* elementary reflector H(i), for i = 1,2,...,k, as returned by
-* DGELQF in the first k rows of its array argument A.
-* A is modified by the routine but restored on exit.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,K).
-*
-* TAU (input) DOUBLE PRECISION array, dimension (K)
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i), as returned by DGELQF.
-*
-* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
-* On entry, the M-by-N matrix C.
-* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-*
-* LDC (input) INTEGER
-* The leading dimension of the array C. LDC >= max(1,M).
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* If SIDE = 'L', LWORK >= max(1,N);
-* if SIDE = 'R', LWORK >= max(1,M).
-* For optimum performance LWORK >= N*NB if SIDE = 'L', and
-* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
-* blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
-* =====================================================================
-*
-* .. Parameters ..
- INTEGER NBMAX, LDT
- PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
-* ..
-* .. Local Scalars ..
- LOGICAL LEFT, LQUERY, NOTRAN
- CHARACTER TRANST
- INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
- $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
-* ..
-* .. Local Arrays ..
- DOUBLE PRECISION T( LDT, NBMAX )
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
-* ..
-* .. External Subroutines ..
- EXTERNAL DLARFB, DLARFT, DORML2, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
-*
-* NQ is the order of Q and NW is the minimum dimension of WORK
-*
- IF( LEFT ) THEN
- NQ = M
- NW = N
- ELSE
- NQ = N
- NW = M
- END IF
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
- INFO = -7
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
-*
- IF( INFO.EQ.0 ) THEN
-*
-* Determine the block size. NB may be at most NBMAX, where NBMAX
-* is used to define the local array T.
-*
- NB = MIN( NBMAX, ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N, K,
- $ -1 ) )
- LWKOPT = MAX( 1, NW )*NB
- WORK( 1 ) = LWKOPT
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORMLQ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
-*
- NBMIN = 2
- LDWORK = NW
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- IWS = NW*NB
- IF( LWORK.LT.IWS ) THEN
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'DORMLQ', SIDE // TRANS, M, N, K,
- $ -1 ) )
- END IF
- ELSE
- IWS = NW
- END IF
-*
- IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
-*
-* Use unblocked code
-*
- CALL DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
- $ IINFO )
- ELSE
-*
-* Use blocked code
-*
- IF( ( LEFT .AND. NOTRAN ) .OR.
- $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
- I1 = 1
- I2 = K
- I3 = NB
- ELSE
- I1 = ( ( K-1 ) / NB )*NB + 1
- I2 = 1
- I3 = -NB
- END IF
-*
- IF( LEFT ) THEN
- NI = N
- JC = 1
- ELSE
- MI = M
- IC = 1
- END IF
-*
- IF( NOTRAN ) THEN
- TRANST = 'T'
- ELSE
- TRANST = 'N'
- END IF
-*
- DO 10 I = I1, I2, I3
- IB = MIN( NB, K-I+1 )
-*
-* Form the triangular factor of the block reflector
-* H = H(i) H(i+1) . . . H(i+ib-1)
-*
- CALL DLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ),
- $ LDA, TAU( I ), T, LDT )
- IF( LEFT ) THEN
-*
-* H or H' is applied to C(i:m,1:n)
-*
- MI = M - I + 1
- IC = I
- ELSE
-*
-* H or H' is applied to C(1:m,i:n)
-*
- NI = N - I + 1
- JC = I
- END IF
-*
-* Apply H or H'
-*
- CALL DLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB,
- $ A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, WORK,
- $ LDWORK )
- 10 CONTINUE
- END IF
- WORK( 1 ) = LWKOPT
- RETURN
-*
-* End of DORMLQ
-*
- END